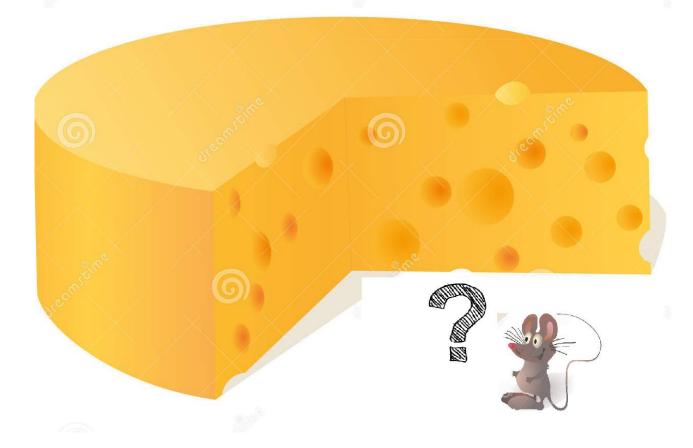
Big Data Class

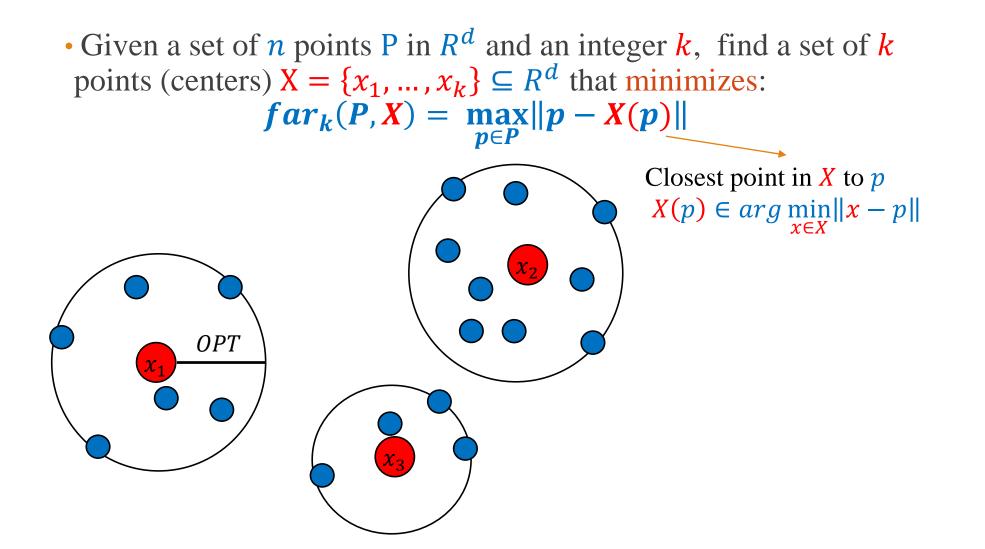


LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN ALAA MAALOUF

אוניברסיטת חיפה University of Haifa جامعة حيفا

Department of Computer Science, University of Haifa.

k-Center / k-Minimum Enclosing Balls



k-Center / k-Minimum Enclosing Balls

Optimal solution in R^d:

Claim 1: A sphere in \mathbb{R}^d is determined by d + 1 points.

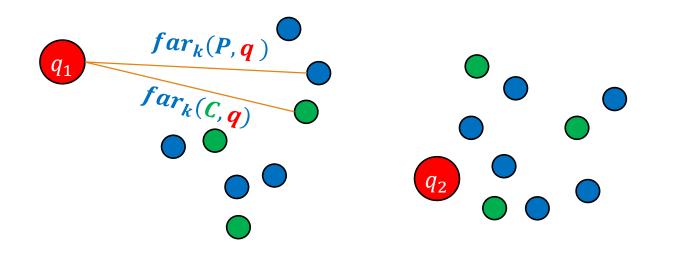
Claim 2: A sphere with minimal radius enclosing a set of points in \mathbb{R}^d passes through d + 1 points from the set.

Algorithm: Exhaustive search over all possible tuples $\binom{n}{k(d+1)}$ (*k* different circles, each determined by d + 1 points).

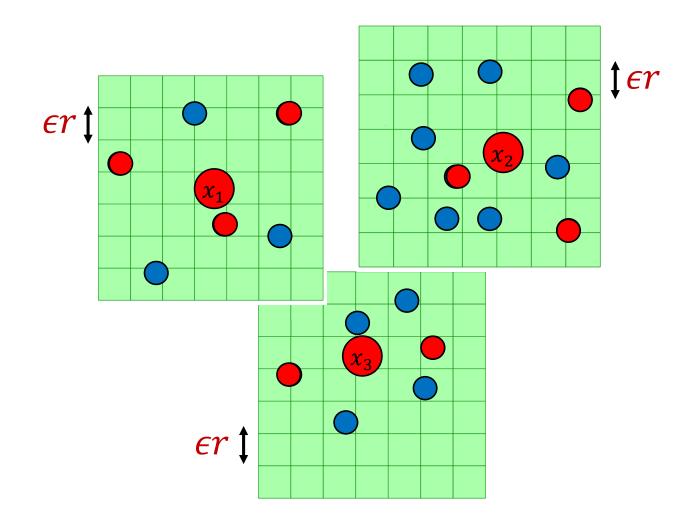
Running time: $n^{O(dk)}$.

Coreset for *k*-Center

• Input:
$$(P, k, Q)$$
 where $P \subseteq R^d$, k is an integer and $Q \subseteq (R^d)^k$.
• Output: $C \subseteq P, |C| = k \left(\frac{1}{\epsilon}\right)^{O(d)} s.t.$ for every $q \in Q$:
 $far_k(P, q) - far_k(C, q) \leq O(\epsilon) \cdot far_k(P, q)$



Coreset for *k*-Center



Find optimal *k*-centers

 (To find *k* "clusters" and the optimal radius *OPT*).

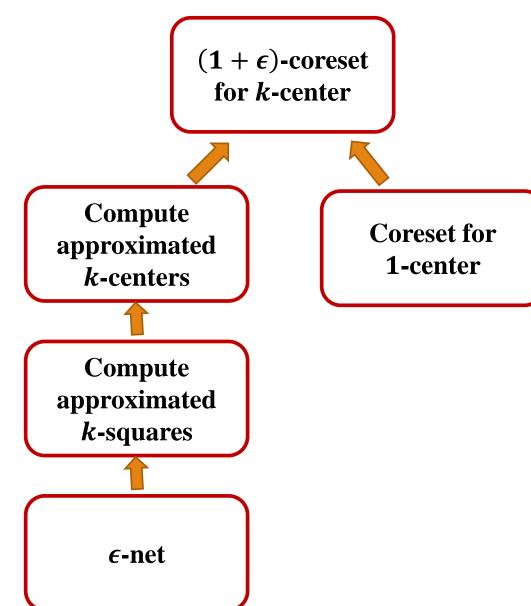
 Compute 1-center coreset for each cluster where

 r = *OPT*.

Total time: $n^{O(dk)}$

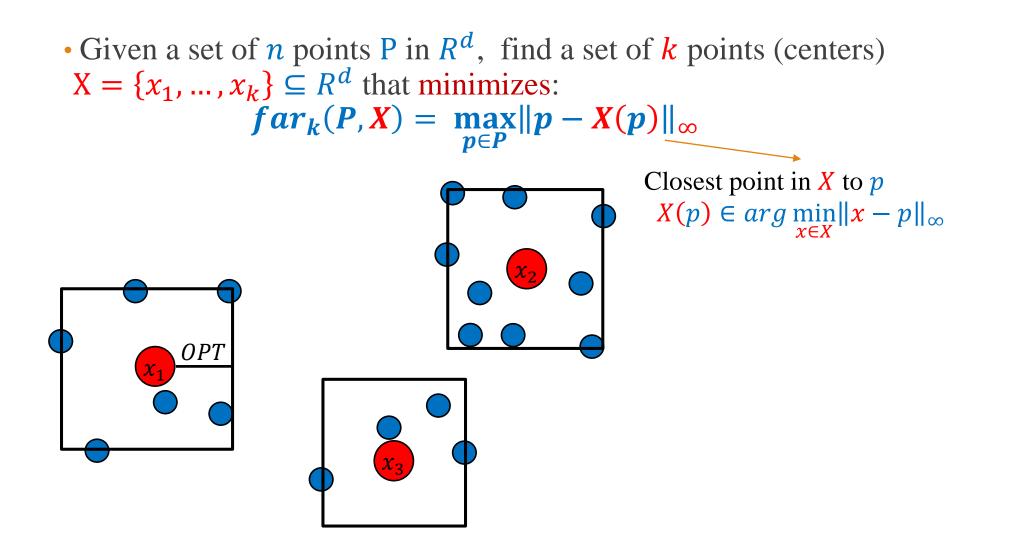
Coreset size: $k \cdot \left(\frac{1}{\epsilon}\right)^{O(d)}$

Coreset for *k*-Center



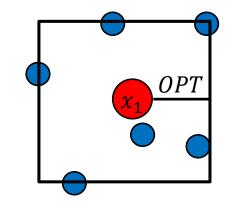
(1 + ε)-Coreset Algorithm: 1) Find optimal *k*-centers (To find *k* "clusters" and the optimal radius *OPT*). 2) Compute 1-center coreset for each cluster where *r* = *OPT*.

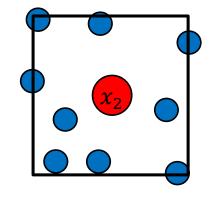
K-Minimum Enclosing Squares



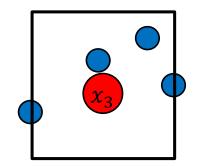
K-Minimum Enclosing Squares \rightarrow K-Center

• Given K-minimum Enclosing Squares where $OPT = far_k(P, X) = \max_{p \in P} ||p - X(p)||_{\infty}$



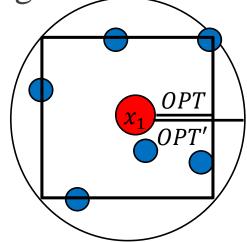


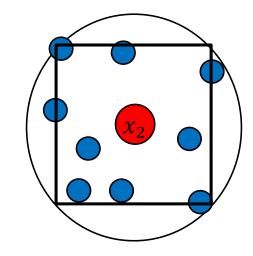
We want to compute: $\widehat{OPT} = far_k(P, X) = \max_{p \in P} ||p - X(p)||$



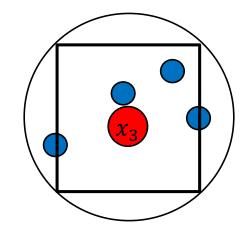
K-Minimum Enclosing Squares \rightarrow K-Center

- Given K-minimum Enclosing Squares
- For each square, draw an enclosing ball

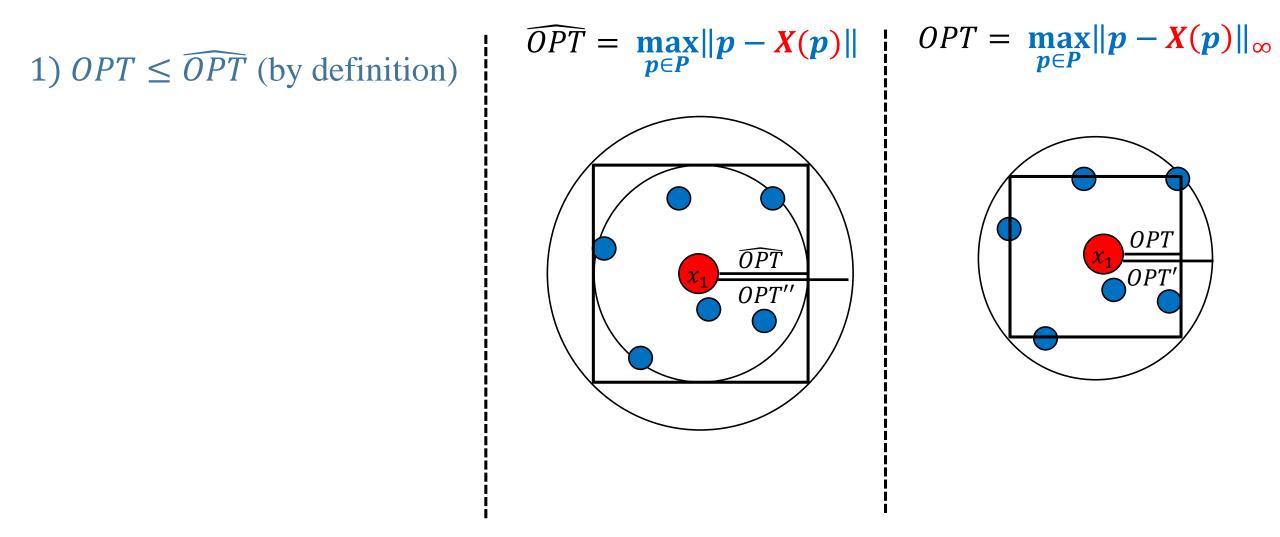




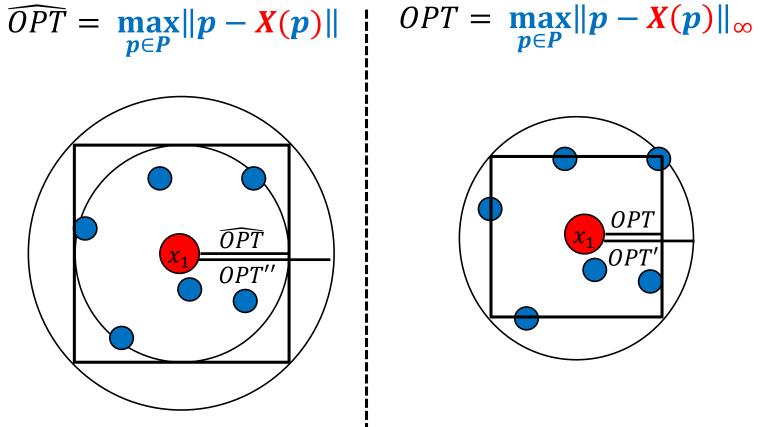
Claim:
$$OPT' \leq \sqrt{d} \cdot \widehat{OPT}$$

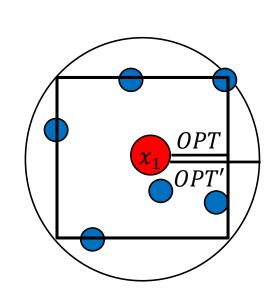


1)
$$OPT \leq \widehat{OPT}$$
 (by definition)
 $\widehat{OPT} = \max_{p \in P} ||p - X(p)||$
 $OPT = \max_{p \in P} ||p - X(p)||_{\infty}$
 $OPT = \max_{p \in P} ||p - X(p)||_{\infty}$



1) $OPT \leq \widehat{OPT}$ (by definition) 2) $OPT' \leq OPT''$





Claim:
$$OPT'' \leq \sqrt{d} \cdot \widehat{OPT}$$

Proof:
$$OPT'' \leq \sqrt{d} \cdot \widehat{OPT}$$

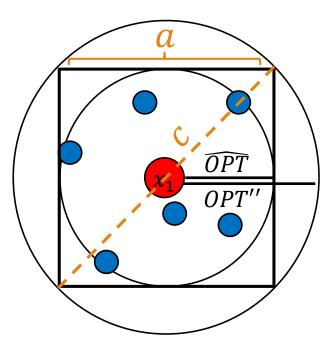
$$a = 2 \cdot \widehat{OPT}$$

$$c = \sqrt{a^2 + \dots + a^2} = \sqrt{da^2}$$

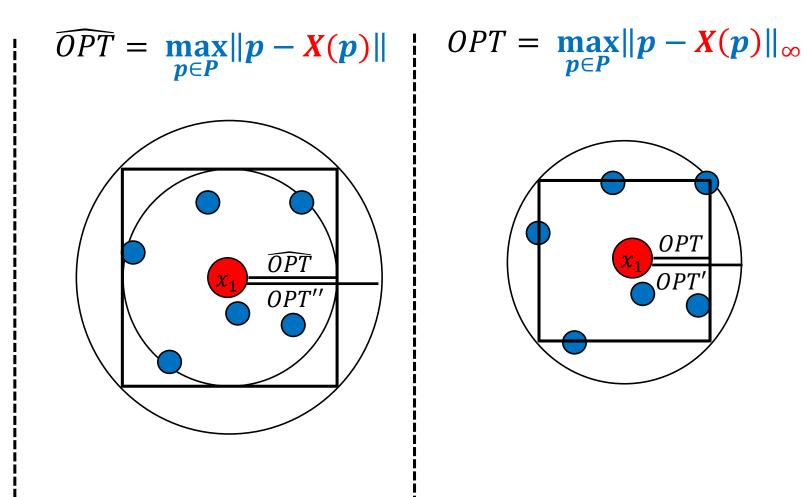
$$= \sqrt{d} \ a = 2\sqrt{d} \cdot \widehat{OPT}$$

$$OPT'' = \frac{c}{2} = \sqrt{d} \cdot \widehat{OPT}$$

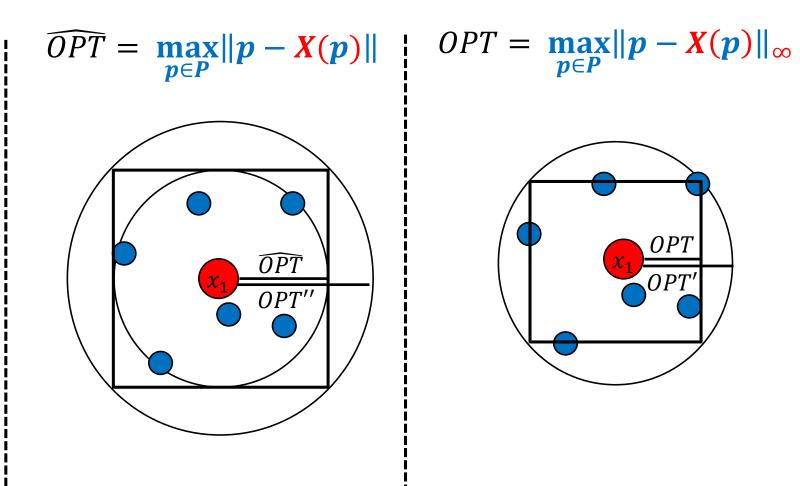
 $\widehat{OPT} = \max_{p \in P} \|p - X(p)\|$



1) $OPT \le \widehat{OPT}$ (by definition) 2) $OPT' \le OPT''$



1) $OPT \le \widehat{OPT}$ (by definition) 2) $OPT' \le OPT''$ 3) $OPT'' \le \sqrt{d} \cdot \widehat{OPT}$



1) $OPT \leq \widehat{OPT}$ (by definition) 2) $OPT' \leq OPT''$ 3) $OPT'' \leq \sqrt{d} \cdot \widehat{OPT}$

 $OPT' \leq \sqrt{d} \cdot \widehat{OPT}$

$$\widehat{OPT} = \max_{p \in P} ||p - X(p)||$$

$$OPT = \max_{p \in P} ||p - X(p)||_{\infty}$$

$$\widehat{OPT}$$

$$OPT$$

$$OPT$$

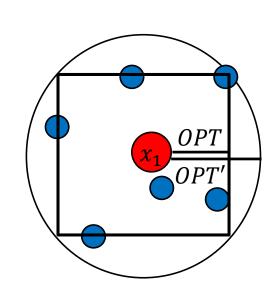
$$OPT$$

$$OPT$$

$$OPT$$

$$OPT$$

$$OPT$$



More Formal: *k*-Squares \rightarrow *k*-Centers

Claim 1:

 $\begin{aligned} far_{\infty}(P,q) &\leq far_{2}(P,q) \leq \sqrt{d} \cdot far_{\infty}(P,q) \\ \underline{Proof of claim 1:} \\ far_{\infty}(P,q) &= \max_{p \in P} ||p-q||_{\infty} \\ &\leq \max_{p \in P} ||p-q||_{2} = far_{2}(P,q) \\ &= \max_{p \in P} \sqrt{(p(1)-q(1))^{2} + \dots + (p(d)-q(d))^{2}} \end{aligned}$

$$\leq \max_{p \in P} \sqrt{d \cdot \max_{i} (p(i) - q(i))^2}$$

$$= \sqrt{d} \cdot \max_{p \in P} (\max_{i} |p(i) - q(i)|)$$

$$= \sqrt{d} \cdot \max_{p \in P} (\|p - q\|_{\infty}) = \sqrt{d} \cdot far_{\infty}(P, q)$$

Definitions:

$$far_2(P,q) = \max_{p \in P} ||p - q||_2$$
$$OPT_2 = \operatorname*{argmin}_{q \in Q} far_2(P,q)$$

$$far_{\infty}(P,q) = \max_{\substack{p \in P}} \|p - q\|_{\infty}$$
$$OPT_{\infty} = \operatorname*{argmin}_{q \in Q} far_{\infty}(P,q)$$

More Formal: *k*-Squares \rightarrow *k*-Centers

Claim 2:

An α -approximation for *k*-squares is an $O(\alpha \cdot \sqrt{d})$ -approximation for *k*-centers.

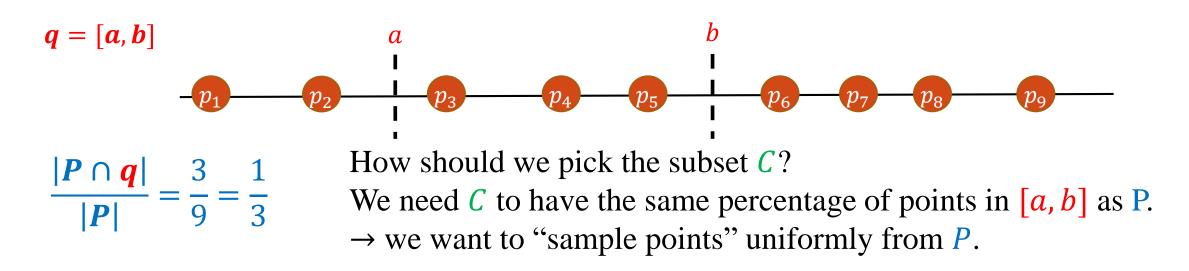
Proof of claim 2:

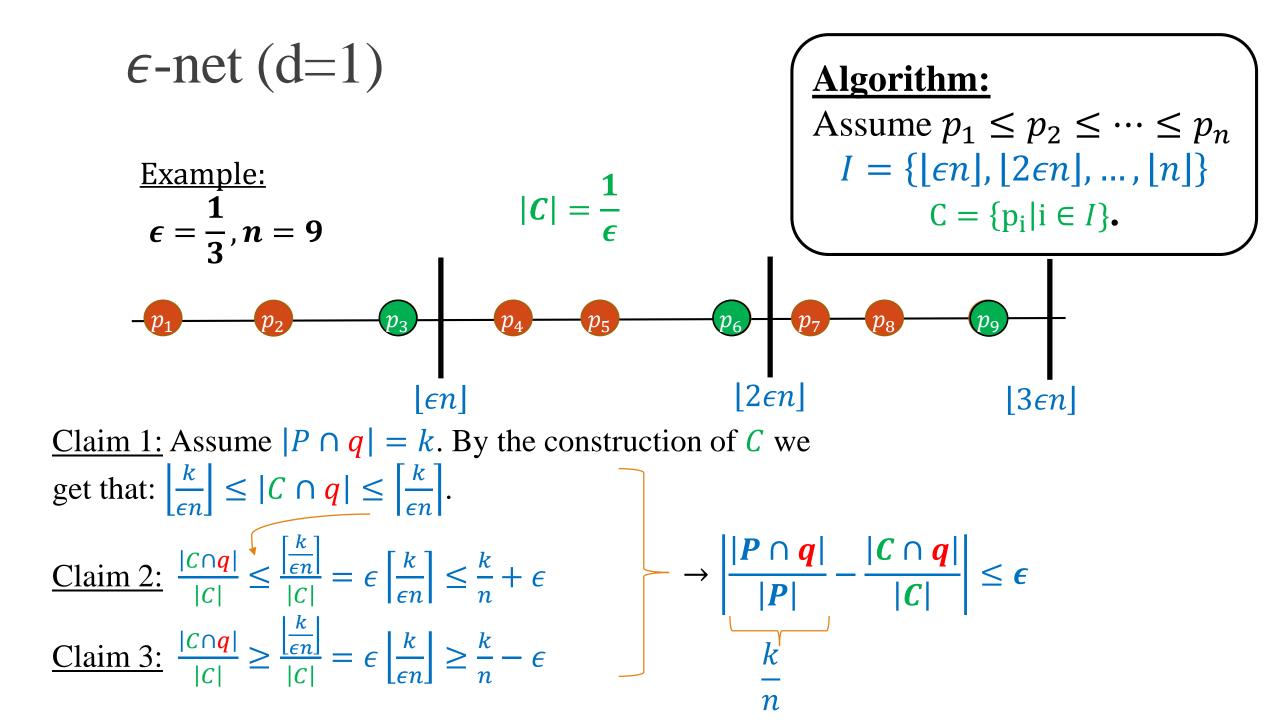
Let a_{∞} be the α -approximation for k-squares $\rightarrow far_{\infty}(P, a_{\infty}) \leq \alpha \cdot far_{\infty}(P, OPT_{\infty})$. $\rightarrow far_{2}(P, a_{\infty}) \leq \sqrt{d} \cdot far_{\infty}(P, a_{\infty})$ (Right side of Claim 1) $\leq \alpha \sqrt{d} \cdot far_{\infty}(P, OPT_{\infty})$ (Definition of a_{∞}) $\leq \alpha \sqrt{d} \cdot far_{\infty}(P, OPT_{2})$ (Definition of OPT_{∞}) $\leq \alpha \sqrt{d} \cdot far_{2}(P, OPT_{2})$ (Left side of Claim 1)

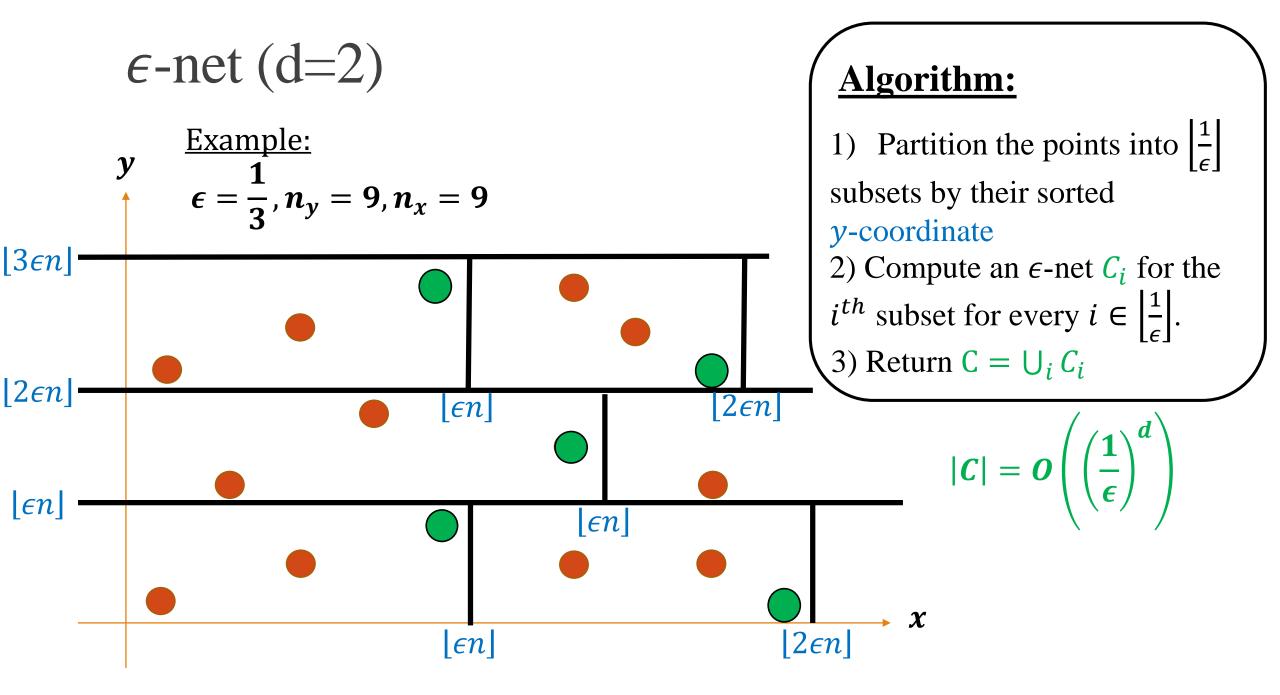
 ϵ -net (d=1)

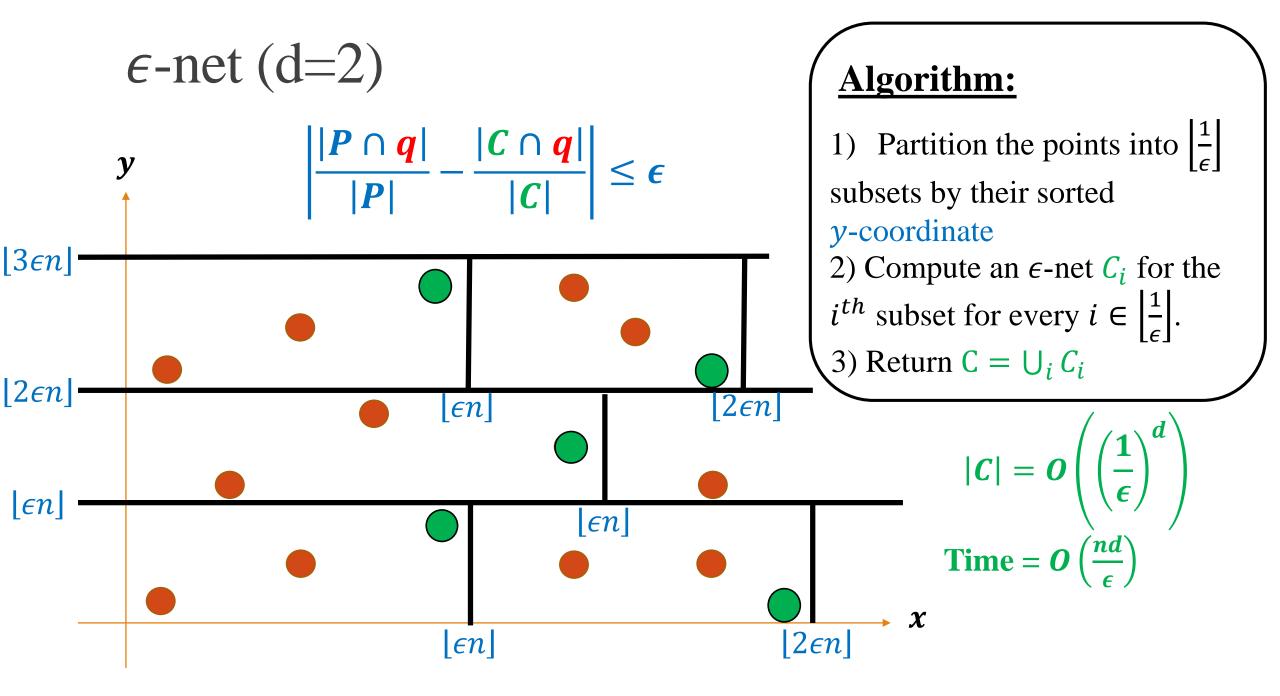
• Input:
P
$$\subseteq R, Q = \{[a, b] | a, b \in R, a \leq b\}$$

• Output:
C $\subseteq P, |C| = \frac{1}{\epsilon} s. t.$ for every $q \in Q$:
 $\left| \frac{|P \cap q|}{|P|} - \frac{|C \cap q|}{|C|} \right| \leq \epsilon$





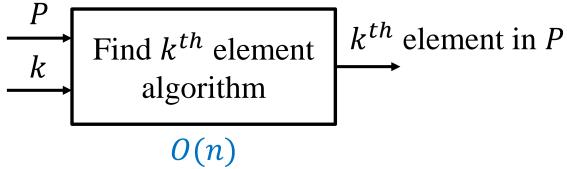




ϵ -net time analysis

Algorithm for computing the ϵ -net:

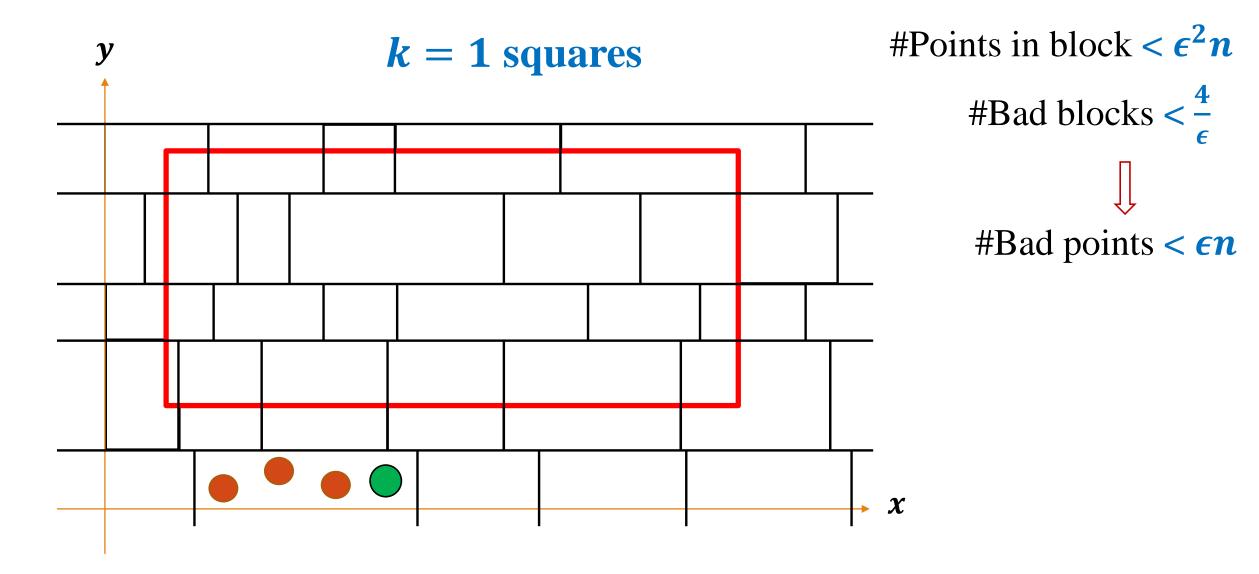
Assuming there is an algorithm for finding the element with rank=k in an unsorted set of n points:



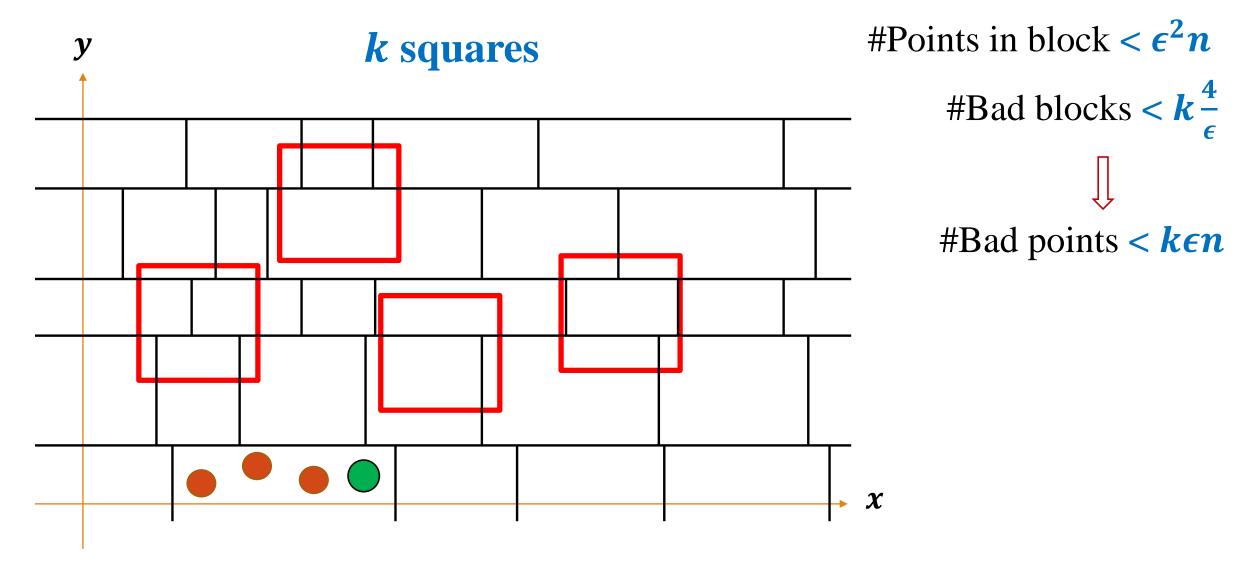
- Find the $\lfloor \epsilon n \rfloor^{th}$ point using this algorithm in O(n) time. –
- Repeat $\left\lfloor \frac{1}{\epsilon} \right\rfloor$ times.
- Repeat for every dimension.

- Total time: $O\left(\frac{nd}{\epsilon}\right)$.

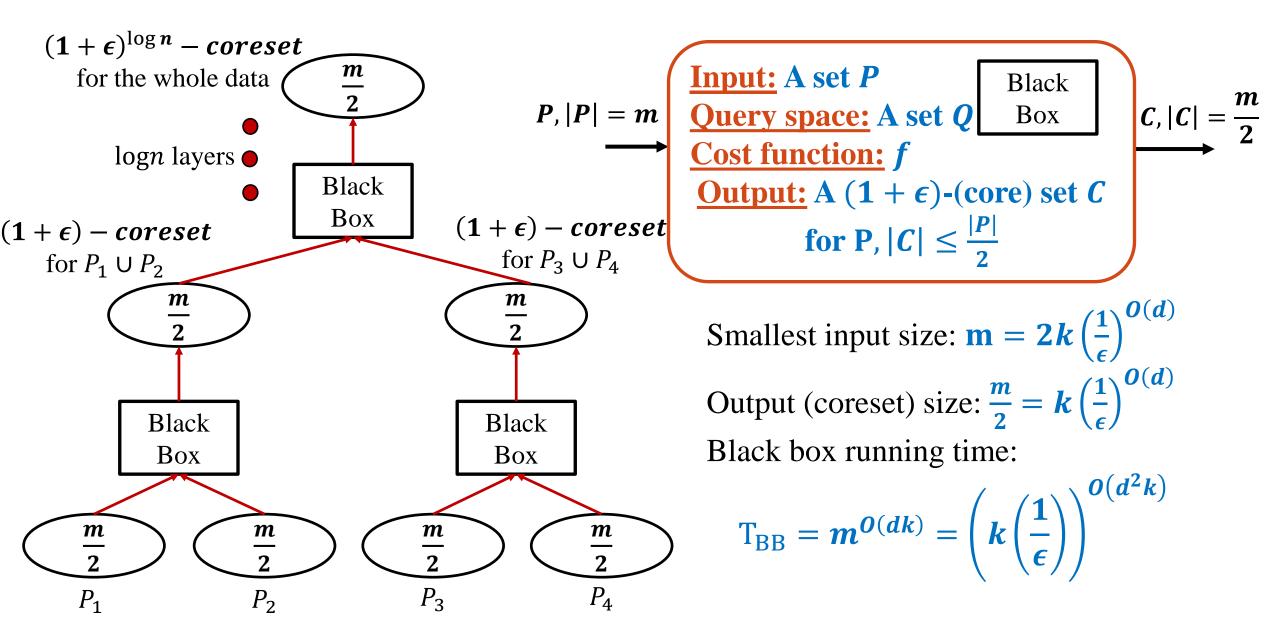
 ϵ -net (d=2)



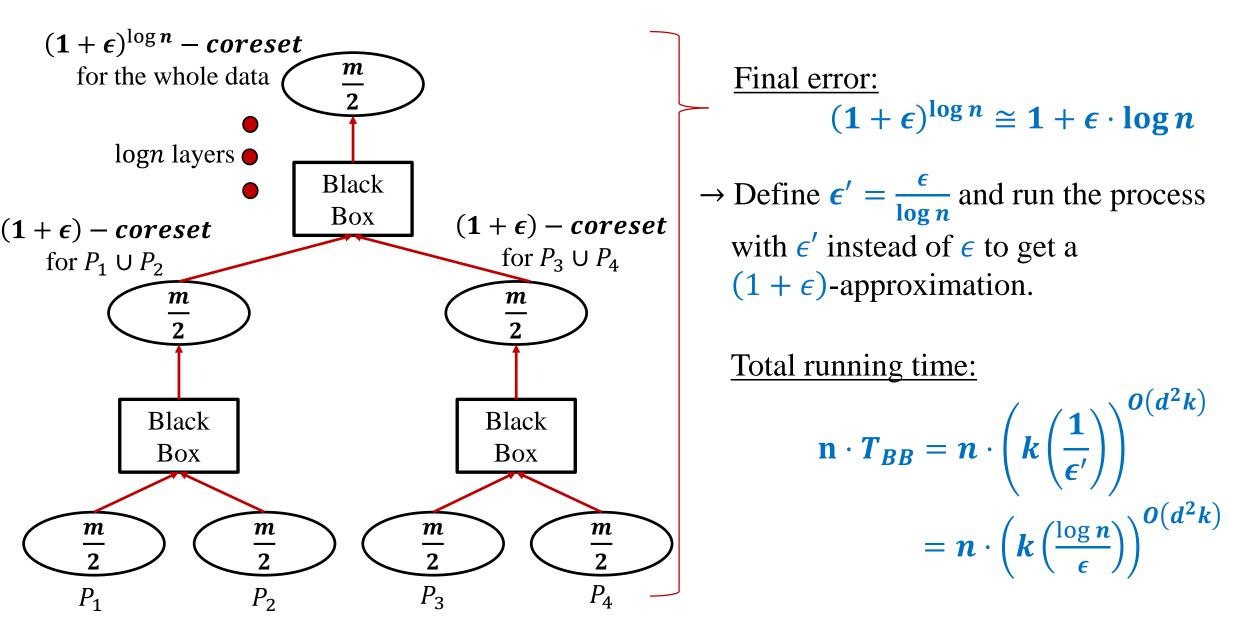
 ϵ -net (d=2)



Coreset for k-Center - Streaming



Coreset for k-Center - Streaming



Coreset for *k*-Center - Streaming

Problem: What if *n* (the number of input data) is unknown or infinite? **Solution:** Doubling. (start with a small tree, then double the size).

