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𝑘-Center / 𝑘-Minimum Enclosing Balls

• Given a set of 𝑛 points P in 𝑅𝑑 and an integer 𝑘,  find a set of 𝑘
points (centers) X = 𝑥1, … , 𝑥𝑘 ⊆ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓𝒌 𝑷,𝑿 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

Closest point in 𝑋 to 𝑝
𝑋 𝑝 ∈ 𝑎𝑟𝑔min

𝑥∈𝑋
𝑥 − 𝑝

𝑥1

𝑥2

𝑥3

𝑂𝑃𝑇



𝑘-Center / 𝑘-Minimum Enclosing Balls

Optimal solution in 𝑅𝑑:

Claim 1: A sphere in 𝑅𝑑 is determined by 𝑑 + 1 points.

Claim 2: A sphere with minimal radius enclosing a set of points in 𝑅𝑑 passes 
through 𝑑 + 1 points from the set.

Algorithm: Exhaustive search over all possible tuples 
𝑛

𝑘(𝑑+1)
(𝑘 different 

circles, each determined by 𝑑 + 1 points).

Running time: 𝑛𝑂 𝑑𝑘 .



Coreset for 𝑘-Center

• Input: 𝑃, 𝑘, 𝑄 where 𝑃 ⊆ 𝑅𝑑 , 𝑘 is an integer and 𝑄 ⊆ 𝑅𝑑
𝑘

.

• Output: C ⊆ 𝑃, 𝐶 = 𝑘
1

𝜖

𝑂(𝑑)
𝑠. 𝑡. for every 𝑞 ∈ 𝑄:

𝑓𝑎𝑟𝑘 𝑃, 𝑞 − 𝑓𝑎𝑟𝑘 𝐶, 𝑞 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟𝑘 𝑃, 𝑞

𝑞1

𝑞2



Coreset for 𝑘-Center
(𝟏 + 𝝐)-Coreset 

Algorithm:

1) Find optimal 𝑘-centers 

(To find 𝑘 “clusters” and

the optimal radius 𝑂𝑃𝑇).

2) Compute 1-center coreset

for each cluster where 

𝑟 = 𝑂𝑃𝑇.
𝑥1

𝑥2

𝑥3

𝜖𝑟

𝜖𝑟

𝜖𝑟

Coreset size: 𝒌 ⋅
𝟏

𝝐

𝑶(𝒅)

Total time: 𝒏𝑶(𝒅𝒌)



Coreset for 𝑘-Center
(𝟏 + 𝝐)-Coreset 

Algorithm:

1) Find optimal 𝑘-centers 

(To find 𝑘 “clusters” and

the optimal radius 𝑂𝑃𝑇).

2) Compute 1-center coreset

for each cluster where 

𝑟 = 𝑂𝑃𝑇.

𝟏 + 𝝐 -coreset 

for 𝒌-center

Compute 

approximated 

𝒌-centers

Compute 

approximated 

𝒌-squares

𝝐-net

Coreset for 

𝟏-center



𝐾-Minimum Enclosing Squares

• Given a set of 𝑛 points P in 𝑅𝑑,  find a set of 𝑘 points (centers) 
X = 𝑥1, … , 𝑥𝑘 ⊆ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓𝒌 𝑷,𝑿 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞

Closest point in 𝑋 to 𝑝
𝑋 𝑝 ∈ 𝑎𝑟𝑔min

𝑥∈𝑋
𝑥 − 𝑝 ∞

𝑥1

𝑥2

𝑥3

𝑂𝑃𝑇



𝐾-Minimum Enclosing Squares → K-Center

𝑥1

𝑥2

𝑥3

𝑂𝑃𝑇

• Given K-minimum Enclosing Squares
where 𝑂𝑃𝑇 = 𝒇𝒂𝒓𝒌 𝑷,𝑿 = 𝐦𝐚𝐱

𝒑∈𝑷
𝒑 − 𝑿 𝒑 ∞

We want to compute:
෣𝑂𝑃𝑇 = 𝒇𝒂𝒓𝒌 𝑷,𝑿 = 𝐦𝐚𝐱

𝒑∈𝑷
𝒑 − 𝑿(𝒑)



𝐾-Minimum Enclosing Squares → K-Center

𝑥1

𝑥2

𝑥3

𝑂𝑃𝑇

• Given K-minimum Enclosing Squares

• For each square, draw an enclosing ball

𝑂𝑃𝑇′

Claim: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)
𝑂𝑃𝑇 = 𝐦𝐚𝐱

𝒑∈𝑷
𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱

𝒑∈𝑷
𝒑 − 𝑿(𝒑)



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′
𝑂𝑃𝑇′′

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′
𝑂𝑃𝑇′′

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)

2) 𝑂𝑃𝑇′ ≤ 𝑂𝑃𝑇′′

Claim: 𝑂𝑃𝑇′′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇



𝐾-Minimum Enclosing Squares → K-Center
Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′′

𝑎 = 2 ⋅෣𝑂𝑃𝑇

𝑐 = 𝑎2 +⋯+ 𝑎2 = 𝑑𝑎2

= 𝑑 𝑎 = 2 𝑑 ⋅෣𝑂𝑃𝑇

𝑂𝑃𝑇′′ =
𝑐

2
= 𝑑 ⋅෣𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑎



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′
𝑂𝑃𝑇′′

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)

2) 𝑂𝑃𝑇′ ≤ 𝑂𝑃𝑇′′



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′
𝑂𝑃𝑇′′

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)

2) 𝑂𝑃𝑇′ ≤ 𝑂𝑃𝑇′′

3) 𝑂𝑃𝑇′′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇



𝐾-Minimum Enclosing Squares → K-Center

𝑥1
𝑂𝑃𝑇

Proof: 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

𝑥1
෣𝑂𝑃𝑇

𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿 𝒑 ∞෣𝑂𝑃𝑇 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝑿(𝒑)

𝑂𝑃𝑇′
𝑂𝑃𝑇′′

1) 𝑂𝑃𝑇 ≤ ෣𝑂𝑃𝑇 (by definition)

2) 𝑂𝑃𝑇′ ≤ 𝑂𝑃𝑇′′

3) 𝑂𝑃𝑇′′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇

➔ 𝑂𝑃𝑇′ ≤ 𝑑 ⋅෣𝑂𝑃𝑇



More Formal: 𝑘-Squares → 𝑘-Centers

Claim 1:

𝑓𝑎𝑟∞ 𝑃, 𝑞 ≤ 𝑓𝑎𝑟2 𝑃, 𝑞 ≤ 𝑑 ⋅ 𝑓𝑎𝑟∞(𝑃, 𝑞)

Proof of claim 1:

𝑓𝑎𝑟∞ 𝑃, 𝑞 = max
𝑝∈𝑃

𝑝 − 𝑞 ∞

≤ max
𝑝∈𝑃

𝑝 − 𝑞 2 = 𝑓𝑎𝑟2(𝑃, 𝑞)

= max
𝑝∈𝑃

𝑝(1) − 𝑞(1) 2 +⋯+ 𝑝(𝑑) − 𝑞(𝑑) 2

≤ max
𝑝∈𝑃

𝑑 ⋅ max
𝑖

𝑝(𝑖) − 𝑞(𝑖) 2

= 𝑑 ⋅ max
𝑝∈𝑃

(max
𝑖

𝑝(𝑖) − 𝑞(𝑖) )

= 𝑑 ⋅ max
𝑝∈𝑃

𝑝 − 𝑞 ∞ = 𝑑 ⋅ 𝑓𝑎𝑟∞ 𝑃, 𝑞

Definitions:

𝑓𝑎𝑟2 𝑃, 𝑞 = max
𝑝∈𝑃

𝑝 − 𝑞 2

𝑂𝑃𝑇2 = argmin
𝑞∈𝑄

𝑓𝑎𝑟2 𝑃, 𝑞

𝑓𝑎𝑟∞ 𝑃, 𝑞 = max
𝑝∈𝑃

𝑝 − 𝑞 ∞

𝑂𝑃𝑇∞ = argmin
𝑞∈𝑄

𝑓𝑎𝑟∞ 𝑃, 𝑞



More Formal: 𝑘-Squares → 𝑘-Centers

Claim 2:

An 𝛼-approximation for 𝑘-squares is an 𝑂(𝛼 ⋅ 𝑑)-approximation for 𝑘-centers.

Proof of claim 2:

Let 𝑎∞ be the 𝛼-approximation for 𝑘-squares → 𝑓𝑎𝑟∞ 𝑃, 𝑎∞ ≤ 𝛼 ⋅ 𝑓𝑎𝑟∞ 𝑃,𝑂𝑃𝑇∞ .

→ 𝑓𝑎𝑟2 𝑃, 𝑎∞ ≤ 𝑑 ⋅ 𝑓𝑎𝑟∞ 𝑃, 𝑎∞ (Right side of Claim 1)

≤ 𝛼 𝑑 ⋅ 𝑓𝑎𝑟∞ 𝑃, 𝑂𝑃𝑇∞ (Definition of 𝑎∞)

≤ 𝛼 𝑑 ⋅ 𝑓𝑎𝑟∞ 𝑃, 𝑂𝑃𝑇2 (Definition of 𝑂𝑃𝑇∞)

≤ 𝛼 𝑑 ⋅ 𝑓𝑎𝑟2 𝑃, 𝑂𝑃𝑇2 (Left side of Claim 1)



𝜖-net (d=1)

• Input: 𝑃 ⊆ 𝑅,𝑄 = 𝑎, 𝑏 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≤ 𝑏}

• Output: C ⊆ 𝑃, 𝐶 =
1

𝜖
𝑠. 𝑡. for every 𝑞 ∈ 𝑄:

𝑷 ∩ 𝒒

𝑷
−

𝑪 ∩ 𝒒

𝑪
≤ 𝝐

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9

𝑎 𝑏𝒒 = [𝒂, 𝒃]

𝑷 ∩ 𝒒

𝑷
=
3

9
=
1

3

How should we pick the subset 𝐶?

We need 𝐶 to have the same percentage of points in [𝑎, 𝑏] as P.

→ we want to “sample points” uniformly from 𝑃.



𝜖-net (d=1)

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9

Algorithm:

Assume 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛
𝐼 = 𝜖𝑛 , 2𝜖𝑛 , … , 𝑛

C = pi i ∈ 𝐼}.
Example:

𝝐 =
𝟏

𝟑
, 𝒏 = 𝟗

𝜖𝑛 2𝜖𝑛 3𝜖𝑛

𝑝3 𝑝6 𝑝9

Claim 1: Assume 𝑃 ∩ 𝑞 = 𝑘. By the construction of 𝐶 we 

get that: 
𝑘

𝜖𝑛
≤ 𝐶 ∩ 𝑞 ≤

𝑘

𝜖𝑛
.

Claim 2:
𝐶∩𝑞

𝐶
≤

𝑘

𝜖𝑛

𝐶
= 𝜖

𝑘

𝜖𝑛
≤

𝑘

𝑛
+ 𝜖

𝑪 =
𝟏

𝝐

Claim 3:
𝐶∩𝑞

𝐶
≥

𝑘

𝜖𝑛

𝐶
= 𝜖

𝑘

𝜖𝑛
≥

𝑘

𝑛
− 𝜖

→
𝑷 ∩ 𝒒

𝑷
−

𝑪 ∩ 𝒒

𝑪
≤ 𝝐

𝑘

𝑛



𝜖-net (d=2) Algorithm:

1) Partition the points into 
1

𝜖

subsets by their sorted 

𝑦-coordinate

2) Compute an 𝜖-net 𝐶𝑖 for the

𝑖𝑡ℎ subset for every 𝑖 ∈
1

𝜖
.

3) Return C = 𝑖ڂ 𝐶𝑖

𝜖𝑛

2𝜖𝑛

3𝜖𝑛

Example:

𝝐 =
𝟏

𝟑
, 𝒏𝒚 = 𝟗,𝒏𝒙 = 𝟗

𝜖𝑛 2𝜖𝑛

𝜖𝑛

𝜖𝑛 2𝜖𝑛

𝑪 = 𝑶
𝟏

𝝐

𝒅

𝒚

𝒙



𝜖-net (d=2) Algorithm:

1) Partition the points into 
1

𝜖

subsets by their sorted 

𝑦-coordinate

2) Compute an 𝜖-net 𝐶𝑖 for the

𝑖𝑡ℎ subset for every 𝑖 ∈
1

𝜖
.

3) Return C = 𝑖ڂ 𝐶𝑖

𝜖𝑛

2𝜖𝑛

3𝜖𝑛

𝜖𝑛 2𝜖𝑛

𝜖𝑛

𝜖𝑛 2𝜖𝑛

𝑪 = 𝑶
𝟏

𝝐

𝒅

Time = 𝑶
𝒏𝒅

𝝐

𝒚

𝒙

𝑷 ∩ 𝒒

𝑷
−

𝑪 ∩ 𝒒

𝑪
≤ 𝝐



𝜖-net time analysis

Algorithm for computing the 𝝐-net:

Assuming there is an algorithm for finding the element with rank=𝑘 in an 
unsorted set of 𝑛 points:

- Find the 𝜖𝑛 𝑡ℎ point using this algorithm in 𝑂(𝑛) time. 

- Repeat 
1

𝜖
times.

- Repeat for every dimension.

Find 𝑘𝑡ℎ element 

algorithm

𝑃

𝑘
𝑘𝑡ℎ element in 𝑃

𝑂(𝑛)

Total time: 𝑂
𝑛𝑑

𝜖
.



𝜖-net (d=2)

𝒚

𝒙

#Bad blocks < 
𝟒

𝝐

#Points in block < 𝝐𝟐𝒏

#Bad points < 𝝐𝒏

𝒌 = 𝟏 squares



𝜖-net (d=2)

𝒚

𝒙

#Bad blocks < 𝒌
𝟒

𝝐

#Points in block < 𝝐𝟐𝒏

#Bad points < 𝒌𝝐𝒏

𝒌 squares



Coreset for 𝑘-Center - Streaming

𝑪, 𝑪 =
𝒎

𝟐
𝑷, 𝑷 = 𝒎

Input: A set 𝑷
Query space: A set 𝑸
Cost function: 𝒇
Output: A (𝟏 + 𝝐)-(core) set 𝑪

for 𝐏, 𝑪 ≤
𝑷

𝟐

Black 

Box

Smallest input size: 𝐦 = 𝟐𝒌
𝟏

𝝐

𝑶 𝒅

Output (coreset) size: 
𝒎

𝟐
= 𝒌

𝟏

𝝐

𝑶 𝒅

Black box running time: 

TBB = 𝒎𝑶 𝒅𝒌 = 𝒌
𝟏

𝝐

𝑶 𝒅𝟐𝒌

𝒎

𝟐

𝒎

𝟐

𝒎

𝟐

𝒎

𝟐

Black 

Box

Black 

Box

𝒎

𝟐

𝒎

𝟐

Black 

Box

𝒎

𝟐

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃1 ∪ 𝑃2

𝑃1 𝑃2 𝑃3 𝑃4

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃3 ∪ 𝑃4

𝟏 + 𝝐 log 𝒏 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for the whole data

log𝑛 layers



Coreset for 𝑘-Center - Streaming

𝒎

𝟐

𝒎

𝟐

𝒎

𝟐

𝒎

𝟐

Black 

Box

Black 

Box

𝒎

𝟐

𝒎

𝟐

Black 

Box

𝒎

𝟐

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃1 ∪ 𝑃2

𝑃1 𝑃2 𝑃3 𝑃4

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃3 ∪ 𝑃4

𝟏 + 𝝐 log 𝒏 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for the whole data

log𝑛 layers

Final error: 

𝟏 + 𝝐 𝐥𝐨𝐠 𝒏 ≅ 𝟏 + 𝝐 ⋅ 𝐥𝐨𝐠𝒏

→ Define 𝝐′ =
𝝐

𝐥𝐨𝐠 𝒏
and run the process

with 𝜖′ instead of 𝜖 to get a

1 + 𝜖 -approximation.

Total running time: 

𝐧 ⋅ 𝑻𝑩𝑩 = 𝒏 ⋅ 𝒌
𝟏

𝝐′

𝑶 𝒅𝟐𝒌

= 𝒏 ⋅ 𝒌
log 𝒏

𝝐

𝑶 𝒅𝟐𝒌



Coreset for 𝑘-Center - Streaming

Problem: What if 𝑛 (the number of input data) is unknown or infinite?

Solution: Doubling. (start with a small tree, then double the size).

Streaming tree 

for 128 points

Streaming tree 

for 256 points

If 𝑛 > 128
We start a 

new tree

If 𝑛 > 2𝑘

We start a 

new tree

Streaming tree 

for 2𝑘 points

𝑘

Only this 

coreset survives

Only this 

coreset survives log 𝑛 coresets (roots)

+ log 𝑛 coresets in the 

last tree.


