Big Data Class

LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN SOLIMAN NASSER

Department of Computer Science, University of Haifa.

- Coreset for coreset
 - <u>Streaming model</u>: we want to update the coreset every time a new data point arrives. Thus we have a weighted input (the old coreset) and we want to compute a new coreset.

- Coreset for coreset
 - <u>Streaming model:</u> Reminder: **Streaming** Caratheodory.

- Coreset for coreset
 - <u>Distributed (and streaming) model:</u> the output of each (distributed) machine is a coreset. Thus to compute the final coreset we have multiple weighted sets of input.

- Importance sampling (sensitivity)
 - Unlike uninform random sampling, where the probability is equal for all data points, we want to be able to give different probabilities (importance).

- Non-points data input (e.g. lines/planes)
 - Example: 1-mean/center for lines/planes

- Non-points data input (e.g. lines)
 - Motivation: Computer Vision

1-Center for Weighted Input

Given (P, ω) where $P \subseteq R^d$ and $\omega: P \to R$ such that $\sum_{p \in P} \omega(p) = 1$, find the point $x \in R^d$ that minimizes: $far(P, \omega, x) = \max_{p \in P} \omega(p) ||p - x||$

1-Center Queries for Weighted Input

• Input:

 $(P, \omega, X, far) \text{ where } P \subseteq R^d, \omega: P \to R \text{ and } \sum \omega(p) = 1, X \subseteq R^d,$ $far(P, \omega, x) = \max_{p \in P} \omega(p) \cdot ||p - x||$ Farthest point from x is not necessarily one of the edge points!

• **Difficulty:**

1-Center for Weighted Input

• Observation:

All points might have the same weighted distance $\omega(p_i) ||p_i|| = 1$ to the origin:

All lines are tangent to the unit circle.

1-Center for Weighted Input

• <u>Claim:</u>

There is an input point $p^* \in P$ which is a factor 2 approximation to the optimal 1-center x^* of the weighted set (P, ω) : Triangle $far(P, \omega, p^*) \leq 2 \cdot far(P, \omega, x^*)$ inequality $\|p-p^*\|$ $far(P, \omega, x^*) \leq far(P, \omega, x)$ $\leq \|p - x^*\| + \|x^* - p^*\|$ for every $x \in Q$ $\leq 2 \cdot \|p - x^*\|$ Closest point to x^* p $\rightarrow \omega(p) \cdot \|p - p^*\|$ $\omega(p) \cdot \|p - x^*\|$ $|x^* - p^*|| = |p - x^*||$ $\leq 2 \cdot \boldsymbol{\omega}(\boldsymbol{p}) \cdot \|\boldsymbol{p} - \boldsymbol{x}^*\|$ for every $p \in P$

 $\rightarrow far(P, \omega, p^*) \leq 2 \cdot far(P, \omega, x^*) \bigcirc \qquad \bigcirc$

• Observation:

If all the data points have the same weight, i.e. for ever $p \in P$, $\omega(p) = \Delta$, then a coreset for 1-center with non-weighted input (*P*) is also a coreset for 1-center with weighted input (*P*, ω).

• <u>Proof:</u>

Let *C* be a coreset for the non-weighted data *P*. Then for every q in the query space Q:

 $|far(P,q) - far(C,q)| = far(P,q) - far(C,q) \le O(\epsilon) \cdot far(P,q)$

Therefore, it also holds that:

 $\Delta \cdot far(P, q) - \Delta \cdot far(C, q) \leq \Delta \cdot O(\epsilon) \cdot far(P, q)$

 $\rightarrow far(P, \Delta, q) - far(C, \Delta, q) \leq O(\epsilon) \cdot far(P, \Delta, q)$

• Input:
$$(P, \omega, X, far)$$
 where $P \subseteq R^d, \omega: P \to R$ and $\sum \omega(p) = 1$,
 $X \subseteq R^d, far(P, \omega, x) = \max_{p \in P} \omega(p) \cdot ||p - x||$
• Output: $C \subseteq P \text{ s. t. } |far(P, \omega, x) - far(C, \omega, x)| \leq O(\epsilon) \cdot far(P, \omega, x)$
minimal
weight ω_{min} $\omega_{min}(1 + \epsilon)$ $\omega_{min}(1 + \epsilon)^2 \omega_{min}(1 + \epsilon)^3$ 1
 P_1 P_2 P_3 $\bullet \bullet$ \bullet
 $i^{th} bin: [\Delta_i, \Delta_i(1 + \epsilon)]$
All points $p \in P$
with weight
 $\Delta_1 = \omega_{min} \leq \omega(p) \leq \omega_{min}(1 + \epsilon)$ $\# bins = \lambda = \frac{\log \frac{1}{\omega_{min}}}{\log(1 + \epsilon)} = \frac{\log \frac{1}{\omega_{min}}}{\epsilon}$

• <u>Input:</u> (P, ω, X, far) where $P \subseteq R^d, \omega: P \to R$ and $\sum \omega(p) = 1$, $X \subseteq R^d, far(P, \omega, x) = \max_{p \in P} \omega(p) \cdot ||p - x||$ • <u>Output:</u> $C \subseteq P \text{ s. t. } |far(P, \omega, x) - far(C, \omega, x)| \le O(\epsilon) \cdot far(P, \omega, x)$ $\omega_{min} \qquad \omega_{min}(1 + \epsilon) \qquad \omega_{min}(1 + \epsilon)^2 \qquad \omega_{min}(1 + \epsilon)^3 \qquad 1$ $p_1 \qquad P_2 \qquad P_3 \qquad 0$ (Oreset for 1 center)

• Input:

$$(P, \omega, X, far) \text{ where } P \subseteq R^{d}, \omega: P \to R \text{ and } \Sigma \omega(p) = 1,$$

$$X \subseteq R^{d}, far(P, \omega, x) = \max_{p \in P} \omega(p) \cdot ||p - x||$$
• Output:

$$C \subseteq P \text{ s. t. } |far(P, \omega, x) - far(C, \omega, x)| \leq O(\epsilon) \cdot far(P, \omega, x)$$

$$\overset{\omega_{min}}{\underset{P_{1}}{\overset{P_{1}}{\overset{P_{2}}{\overset{P_{3}}$$

• <u>Input:</u> (P, ω, X, far) where $P \subseteq R^d, \omega: P \to R$ and $\sum \omega(p) = 1$, $X \subseteq R^d, far(P, \omega, x) = \max_{p \in P} \omega(p) \cdot ||p - x||$ • <u>Output:</u> $C \subseteq P \text{ s.t. } |far(P, \omega, x) - far(C, \omega, x)| \le O(\epsilon) \cdot far(P, \omega, x)$

• Left to prove that: For every $i \in \{1, ..., \lambda\}$ and every $x \in X$: $far(P_i, \omega, x) - far(C_i, \omega, x) \le O(\epsilon) \cdot far(P_i, \omega, x)$

 $far(P_i, \omega, x) = \omega(p^*) \|p^* - x\|.$

 $far(P_i, \Delta_i, x) = \omega'(p^{*'}) ||p^{*'} - x||.$

• Left to prove that:

For every $i \in \{1, ..., \lambda\}$ and every $q \in Q$: $far(P_i, \omega, x) - far(C_i, \omega, x) \le O(\epsilon) \cdot far(P_i, \omega, x)$

• We know that:

 $\frac{far(P_i,\omega,x)}{far(P_i,\Delta_i,x)} = \frac{\omega(p^*)\|p^* - x\|}{\omega'(p^{*'})\|p^{*'} - x\|}$ For every $i \in \{1, ..., \lambda\}$ and every $q \in Q$: we proved $far(P_i, x) - far(C_i, x) \le O(\epsilon) \cdot far(P_i, x)$ $\leq \frac{\omega(p^*)\|p^* - x\|}{2}$ this in previous $\omega'(p^{*'})\|p^*-x\|$ $\rightarrow far(P_i, \Delta_i, x) - far(C_i, \Delta_i, x) \leq O(\epsilon) \cdot far(P_i, \Delta_i, x)$ slides $=\frac{\omega(p^*)}{\omega'(p^{*'})} \le (1+\epsilon)$ $far(P_i, \omega, x) - far(C_i, \omega, x)$ $\Delta_i \leq \omega(p_i)$ for every $p_i \in P_i$ $\leq (1 + \epsilon) \cdot far(P_i, \Delta_i, x) - far(C_i, \Delta_i, x)$ $= \epsilon \cdot far(P_i, \Delta_i, x) + far(P_i, \Delta_i, x) - far(C_i, \Delta_i, x) \le 2\epsilon \cdot far(P_i, \Delta_i, x)$ $\leq 2\epsilon \cdot far(P_i, \omega, x) = O(\epsilon) \cdot far(P_i, \omega, x)$

- Input: $P \subseteq R^2, Q = \{\ell \mid \ell \text{ is a line in } R^2\}, dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^2, Q = \{\ell \mid \ell \text{ is a line in } R^2\}, dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

• Input:
$$P \subseteq R^2, Q = \{\ell \mid \ell \text{ is a line in } R^2\}, dist(p, \ell) = \min_{x \in \ell} ||p - x||_2$$

• Output: $C \subseteq P \text{ s.t. } \forall \ell \in Q : \max_{p \in P} dist(p, \ell) - \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^2, Q = \{\ell \mid \ell \text{ is a line in } R^2\}, dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

 ℓ'' is the rotation of ℓ'' around p' to $\ell''s$ closest point

 $dist(p, \ell'') \le 2 \cdot dist(p, \ell')$

Find ℓ'' by exhaustive search over every pair of points. $O(n^3)$

<u>Claim</u>: The projected *n* points *P'* are a "coreset" (not part of the input data) for any line query: $\max_{p \in P} dist(p, \ell) - \max_{p \in P'} dist(p, \ell) \le \epsilon \cdot \widetilde{OPT}$

 $\leq 4\epsilon \cdot OPT$

 $\leq 4\epsilon \cdot \max_{p \in P} dist(p, \ell)$

$$\rightarrow$$
 Run with $\epsilon' = \frac{\epsilon}{4}$

is the same weight for all points $\forall p \in \ell_i: dist(p, \ell) = \omega \cdot dist(p, q_i)$ \rightarrow Compute a 1-Center coreset C_i for each line $\ell_i!$

 $C = \bigcup C_i$

Has no effect since it

since a union of two coresets is a coreset.

Problem: The coreset is

The coreset is not part of the input data.

Solution:

Pick the closest points in the input data to the points of C.

Problem: The coreset is not part of the input data.

Solution:

Pick the closest points in the input data to the points

 \rightarrow This adds another error of $\boldsymbol{\epsilon} \cdot \widetilde{\boldsymbol{OPT}}$

 $\max_{p \in P} dist(p, \ell) \le \max_{p \in P'} dist(p, \ell) + 2\epsilon \cdot \widetilde{OPT}$ $\leq (1+8\epsilon) \cdot \max_{p \in P'} dist(p, \ell)$

 $\frac{\text{Total time:}}{O(n^3)}.$ $\frac{\text{Coreset size:}}{|C| \le 2 \cdot \# \text{lines} = 2 \cdot \frac{2}{\epsilon} = \frac{4}{\epsilon}.$

Total time: $O(n^3)$. Coreset size: $|C| \le 2 \cdot \# lines = 2 \cdot \frac{2}{\epsilon} = \frac{4}{\epsilon}$.

Improvement:

Run the above algorithm using the streaming tree. Run on batches of size $2 \cdot |C| = \frac{8}{\epsilon}$. <u>Total time:</u>

$$O(n \cdot TimeForBatch) = O\left(n \cdot \left(\frac{8}{\epsilon}\right)^3\right).$$

Error for streaming tree: The error increases to $(1 + \epsilon)^{\log n} \sim (1 + \epsilon \log n)$ $\rightarrow \text{Run with } \epsilon' = \frac{\epsilon}{\log n}.$

Off-line Coreset Construction

1) (Reduce): *C* is a
$$1 + \epsilon$$
 - (core) set for P if:
 $\forall q \in Q, |f(P,q) - f(C,q)| \le \epsilon f(P,q)$

2) (Merge): If C₁ is a coreset for P_1 and C₂ is a coreset for P_2 , then: $|f(P_1 \cup P_2) - f(C_1 \cup C_2)| \le \epsilon f(P_1 \cup P_2)$

Proof

 $C_1 = P_1$

 C_2 is a coreset for $P_1 \cup P_2$

 C_i is a coreset for $C_{i-1} \cup P_i$

 $|f(P_1 \cup P_2) - f(C_2)| \le \epsilon f(P_1 \cup P_2)$

 $|f(C_2 \cup P_3) - f(C_3)| \le \epsilon f(C_2 \cup P_3)$

Need to prove that: $|f(P_1 \cup P_2 \cup P_3) - f(C_3)| \le \epsilon f(P_1 \cup P_2 \cup P_3)$

$$\begin{split} |f(P_1 \cup P_2 \cup P_3) - f(C_3)| &\leq |f(P_1 \cup P_2) + f(P_3) - f(C_3)| = |f(P_1 \cup P_2) + f(C_2) - f(C_2) + \\ f(P_3) - f(C_3)| &\leq |f(P_1 \cup P_2) - f(C_2)| + |f(C_2) + f(P_3) - f(C_3)| \leq \epsilon f(P_1 \cup P_2) + \\ |f(C_2 \cup P_3) - f(C_3)| &\leq \epsilon f(P_1 \cup P_2) + \epsilon f(C_2 \cup P_3) \leq \epsilon \left(f(P_1 \cup P_2 \cup P_3) + f(C_2)\right) \leq \\ \epsilon \left(f(P_1 \cup P_2 \cup P_3) + 2f(P_1 \cup P_2 \cup P_3)\right) \leq O(\epsilon)f(P_1 \cup P_2 \cup P_3) \end{split}$$

Streaming

