
Big Data
Class

LECTURER: DAN FELDMAN

TEACHING ASSISTANTS:

IBRAHIM JUBRAN

SOLIMAN NASSER

Department of Computer Science, University of Haifa.

Weighted Input

• Coreset for coreset

• Streaming model: we want to update the coreset every time a new data
point arrives. Thus we have a weighted input (the old coreset) and we want
to compute a new coreset.

Why / When ?

Weighted Input

Why / When ?

Black Box

Caratheodory Streaming

𝑪𝒂𝒓𝒂𝒕𝒉𝒆𝒐𝒅𝒐𝒓𝒚

(𝒅 + 𝟏) points𝒅 + 𝟏

Weighted input (𝐶, 𝜔) from prev. iteration s.t.

𝑝∈𝑃

𝑝 − 𝑥 2 =

𝑐∈𝐶

𝝎 𝒄 𝑐 − 𝑥 2

• Coreset for coreset

• Streaming model:
Reminder: Streaming Caratheodory.

𝒑𝒏+𝟏

Weighted Input

• Coreset for coreset

• Distributed (and streaming) model: the output of each (distributed)
machine is a coreset. Thus to compute the final coreset we have multiple
weighted sets of input.

Why / When ?

Weighted Input

• Coreset for coreset

• Distributed (and Streaming) model:
Reminder:

Why / When ?
2 weighted input sets

𝐶1, 𝜔1 , (𝐶2, 𝜔2)

Weighted Input

• Importance sampling (sensitivity)

• Unlike uninform random sampling, where the probability is equal for all
data points, we want to be able to give different probabilities (importance).

Why / When ?

Bigger weight
→ more important

𝜔1

𝜔2

𝜔3

𝜔4

𝜔5
𝜔6

𝜔7

Weighted Input

• Non-points data input (e.g. lines/planes)

• Example: 1-mean/center for lines/planes

Why / When ?

Weighted Input

• Non-points data input (e.g. lines)

• Motivation: Computer Vision

Why / When ?

1-Center for Weighted Input

Given (𝑃, 𝜔) where 𝑃 ⊆ 𝑅𝑑and 𝜔:𝑃 → 𝑅 such that σ𝑝∈𝑃𝜔(𝑝) = 1, find

the point 𝑥 ∈ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓 𝑷,𝝎, 𝒙 = 𝐦𝐚𝐱
𝒑∈𝑷

𝝎 𝒑 𝒑 − 𝒙

x
𝑝𝑖

1-Center Queries for Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1, 𝑋 ⊆ 𝑅𝑑,

𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Difficulty:

Farthest point from 𝒙
is not necessarily one of

the edge points!

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑥

𝜔1 = 0.1

𝜔2 = 0.1

𝜔3 = 0.1

𝜔4 = 0.2

𝜔5 = 0.3

𝜔6 = 0.1

𝜔7 = 0.1

10 20 30 40 50 60 70

𝒇𝒂𝒓 𝒑𝟕, 𝝎𝟕, 𝒙 = 𝝎𝟕 ⋅ 𝒑𝟕 − 𝒙 = 𝟎. 𝟏 ∗ 𝟒𝟓 = 𝟒. 𝟓

𝒇𝒂𝒓 𝒑𝟓, 𝝎𝟓, 𝒙 = 𝝎𝟓 ⋅ 𝒑𝟓 − 𝒙 = 𝟎. 𝟑 ∗ 𝟐𝟓 = 𝟕. 𝟓

1-Center for Weighted Input

• Connection to lines in 𝑑 = 2:

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑥

𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7

𝒇𝒂𝒓 𝒑𝟓, 𝝎𝟓, 𝒙 = 𝝎𝟓 ⋅ 𝒑𝟓 − 𝒙

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑥

𝜶𝟓

ℓ5

𝒅𝒊𝒔𝒕 𝒙, ℓ𝟓 = 𝐬𝐢𝐧𝜶𝟓 ⋅ 𝒅𝒊𝒔𝒕 𝒑𝟓, 𝒙
= 𝐬𝐢𝐧(𝐬𝐢𝐧−𝟏𝝎𝟓) ⋅ 𝒑𝟓 − 𝒙
= 𝝎𝟓 ⋅ 𝒑𝟓 − 𝒙
= 𝒇𝒂𝒓(𝒑𝟓, 𝝎𝟓, 𝒙)

𝜶𝟓 = 𝐬𝐢𝐧−𝟏 𝝎𝟓

Weighted 𝟏-Center

Distance to lines in 𝑹𝟐

1-Center for Weighted Input

• Observation:

All points might have the same weighted distance 𝜔 𝑝𝑖 𝑝𝑖 = 1 to
the origin:
All lines are tangent to the unit circle.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6𝑂

1-Center for Weighted Input

• Claim:
There is an input point 𝑝∗ ∈ 𝑃 which is a factor 2 approximation to
the optimal 1-center 𝑥∗ of the weighted set (𝑃, 𝜔):

𝒇𝒂𝒓 𝑷,𝝎, 𝒑∗ ≤ 𝟐 ⋅ 𝒇𝒂𝒓(𝑷,𝝎, 𝒙∗)

𝑥∗

𝑝

𝒇𝒂𝒓 𝑷,𝝎, 𝒙∗ ≤ 𝒇𝒂𝒓(𝑷,𝝎, 𝒙)
for every 𝒙 ∈ 𝑸

𝒑∗

𝒙∗ − 𝒑∗

≤ 𝒑 − 𝒙∗

𝒑 − 𝒑∗

≤ 𝒑 − 𝒙∗ + 𝒙∗ − 𝒑∗

≤ 𝟐 ⋅ 𝒑 − 𝒙∗
Closest point to 𝑥∗

→ 𝝎 𝒑 ⋅ 𝒑 − 𝒑∗

≤ 𝟐 ⋅ 𝝎 𝒑 ⋅ 𝒑 − 𝒙∗

for every 𝒑 ∈ 𝑷

→ 𝒇𝒂𝒓 𝑷,𝝎, 𝒑∗ ≤ 𝟐 ⋅ 𝒇𝒂𝒓(𝑷,𝝎, 𝒙∗)

Triangle

inequality

Coreset for 1-Center with Equally Weighted Input

• Observation:

If all the data points have the same weight, i.e. for ever 𝑝 ∈ 𝑃, 𝜔 𝑝 = Δ, then a
coreset for 1-center with non-weighted input (𝑃) is also a coreset for 1-center
with weighted input (𝑃, 𝜔).

• Proof:

Let 𝐶 be a coreset for the non-weighted data 𝑃. Then for every 𝑞 in the query
space 𝑄:

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝐶, 𝑞 = 𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟 𝑃, 𝑞

Therefore, it also holds that:
Δ ⋅ 𝑓𝑎𝑟 𝑃, 𝑞 − Δ ⋅ 𝑓𝑎𝑟 𝐶, 𝑞 ≤ Δ ⋅ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟 𝑃, 𝑞

→ 𝒇𝒂𝒓 𝑷, 𝚫, 𝒒 − 𝒇𝒂𝒓 𝑪, 𝚫, 𝒒 ≤ 𝑶 𝝐 ⋅ 𝒇𝒂𝒓 𝑷, 𝚫, 𝒒

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

All points 𝑝 ∈ 𝑃
with weight

Δ1 = 𝜔𝑚𝑖𝑛 ≤ 𝜔 𝑝 ≤ 𝜔𝑚𝑖𝑛(1 + 𝜖)

𝑃1 𝑃2 𝑃3

#𝑏𝑖𝑛𝑠 = 𝜆 =
log

1
𝜔𝑚𝑖𝑛

log 1 + 𝜖
=
log

1
𝜔𝑚𝑖𝑛

𝜖

𝑚𝑖𝑛𝑖𝑚𝑎𝑙
𝑤𝑒𝑖𝑔ℎ𝑡

𝒊𝒕𝒉 𝒃𝒊𝒏: [𝚫𝒊, 𝚫𝒊(𝟏 + 𝝐)]

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝜖𝑟

Coreset for 1-center

𝑃1 𝑃2 𝑃3

(𝑪𝟏, 𝝎)
Without the weights

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝜖𝑟

Coreset for 1-center

𝑃1 𝑃2 𝑃3

(𝑪𝟐, 𝝎)

(𝑪𝟏, 𝝎)

Without the weights

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝜖𝑟

Coreset for 1-center

𝑃1 𝑃2 𝑃3

(𝑪𝟑, 𝝎)

(𝑪𝟏 ∪ 𝑪𝟐, 𝝎)

Without the weights

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝜖𝑟

Coreset for 1-center

𝑃1 𝑃2 𝑃3

(𝑪𝟏 ∪ 𝑪𝟐 ∪ 𝑪𝟑, 𝝎)

Without the weights

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝑃1 𝑃2 𝑃3

𝐂 = 𝑪𝟏 ∪ 𝑪𝟐 ∪⋯∪ 𝑪𝝀

𝑪 = 𝑪𝟏 ∪ 𝑪𝟐 ∪⋯∪ 𝑪𝝀 = 𝝀 ⋅
𝟏

𝝐

𝑶 𝒅

Coreset for 1-Center with Weighted Input

• Input: 𝑃,𝜔, 𝑋, 𝑓𝑎𝑟 where 𝑃 ⊆ 𝑅𝑑 , 𝜔: 𝑃 → 𝑅 and σ𝜔 𝑝 = 1,

𝑋 ⊆ 𝑅𝑑, 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 = max
𝑝∈𝑃

𝜔 𝑝 ⋅ ‖𝑝 − 𝑥‖

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. 𝑓𝑎𝑟 𝑃,𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪,𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝜔, 𝑥)

𝜔𝑚𝑖𝑛 𝜔𝑚𝑖𝑛(1 + 𝜖) 𝜔𝑚𝑖𝑛 1 + 𝜖 2 𝜔𝑚𝑖𝑛 1 + 𝜖 3 1

𝑃1 𝑃2 𝑃3

• Left to prove that:

For every 𝑖 ∈ {1,… , 𝜆} and every 𝑥 ∈ 𝑋 :

𝑓𝑎𝑟 𝑃𝑖 , 𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪𝒊, 𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃𝑖 , 𝜔, 𝑥)

Coreset for 1-Center with Weighted Input

• Left to prove that:

For every 𝑖 ∈ {1,… , 𝜆} and every 𝑞 ∈ 𝑄 :

𝑓𝑎𝑟 𝑃𝑖 , 𝜔, 𝑥 − 𝑓𝑎𝑟 𝑪𝒊, 𝜔, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃𝑖 , 𝜔, 𝑥)
• We know that:

For every 𝑖 ∈ {1,… , 𝜆} and every 𝑞 ∈ 𝑄 :

𝑓𝑎𝑟 𝑃𝑖 , 𝑥 − 𝑓𝑎𝑟 𝑪𝒊, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃𝑖 , 𝑥)

→ 𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥 − 𝑓𝑎𝑟 𝑪𝒊, Δi, 𝑥 ≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃𝑖 , Δ𝑖 , 𝑥)

𝒇𝒂𝒓 𝑷𝒊, 𝝎, 𝒙 − 𝒇𝒂𝒓 𝑪𝒊, 𝝎, 𝒙

≤ 1 + 𝜖 ⋅ 𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥 − 𝑓𝑎𝑟 𝑪𝒊, Δi, 𝑥

Δ𝑖 ≤ 𝜔(𝑝𝑖) for every 𝑝𝑖 ∈ 𝑃𝑖

≤ 2𝜖 ⋅ 𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥= 𝜖 ⋅ 𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥 + 𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥 − 𝑓𝑎𝑟 𝐶𝑖 , Δi, 𝑥

we proved

this in previous

slides

≤ 2𝜖 ⋅ 𝑓𝑎𝑟 𝑃𝑖 , 𝜔, 𝑥 = 𝑶 𝝐 ⋅ 𝒇𝒂𝒓(𝑷𝒊, 𝝎, 𝒙)

𝑓𝑎𝑟 𝑃𝑖 , 𝜔, 𝑥 = 𝜔(𝑝∗) 𝑝∗ − 𝑥 .

𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥 = 𝜔′(𝑝∗′) 𝑝∗′ − 𝑥 .

𝑓𝑎𝑟 𝑃𝑖 , 𝜔, 𝑥

𝑓𝑎𝑟 𝑃𝑖 , Δi, 𝑥
=

𝜔 𝑝∗ 𝑝∗ − 𝑥

𝜔′ 𝑝∗′ 𝑝∗′ − 𝑥

≤
𝜔 𝑝∗ 𝑝∗ − 𝑥

𝜔′ 𝑝∗′ 𝑝∗ − 𝑥

=
𝜔 𝑝∗

𝜔′ 𝑝∗′
≤ (1 + 𝜖)

Coreset for 1-Line in 𝑅2

• Input: 𝑃 ⊆ 𝑅2, 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅2}, 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

• Input: 𝑃 ⊆ 𝑅2, 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅2}, 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

• Input: 𝑃 ⊆ 𝑅2, 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅2}, 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

• Input: 𝑃 ⊆ 𝑅2, 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅2}, 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑝′

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗
𝑝′

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗

ℓ′′

𝑝′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest

point

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗

ℓ′′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest

point

𝑑𝑖𝑠𝑡 𝑝, ℓ′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑝′

Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗

ℓ′′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest

point

𝑑𝑖𝑠𝑡 𝑝, ℓ′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑝′

𝒅𝒊𝒔𝒕 𝒑, ℓ′′ ≤ 𝟒 ⋅ 𝒅𝒊𝒔𝒕 𝒑, ℓ∗

Coreset for 1-Line in 𝑅2

ℓ′′
Find ℓ′′ by exhaustive search

over every pair of points.

𝑶 𝒏𝟑

෫𝑂𝑃𝑇

Coreset for 1-Line in 𝑅2

Find ℓ′′ by exhaustive search

over every pair of points.

𝑶 𝒏𝟑

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

𝜖 ⋅෫𝑂𝑃𝑇

Coreset for 1-Line in 𝑅2

Find ℓ′′ by exhaustive search

over every pair of points.

𝑶 𝒏𝟑

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

Project each point onto

it’s closest line

𝜖 ⋅෫𝑂𝑃𝑇

Coreset for 1-Line in 𝑅2

Find ℓ′′ by exhaustive search

over every pair of points.

𝑶 𝒏𝟐

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

Project each point onto

it’s closest line

𝜖 ⋅෫𝑂𝑃𝑇

Data dimension is now reduced.

Coreset for 1-Line in 𝑅2

Claim: The projected 𝑛 points 𝑃′
are a “coreset” (not part of the input data)

for any line query:

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ 𝜖 ⋅෫𝑂𝑃𝑇

≤ 4𝜖 ⋅ 𝑂𝑃𝑇

→ Run with 𝜖′ =
𝜖

4

≤ 4𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Coreset for 1-Line in 𝑅2

𝜖 ⋅෫𝑂𝑃𝑇

∀𝑝 ∈ ℓ𝑖: 𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞𝑖

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

𝑞1
𝜔𝑞2𝑞3𝑞4𝑞5

𝑞6

𝜔
𝜔

𝜔
𝜔

𝜔

→ Compute a 𝟏-Center coreset 𝑪𝒊
for each line ℓ𝒊!

Has no effect since it

is the same weight for

all points

Coreset for 1-Line in 𝑅2

∀𝑝 ∈ ℓ𝑖: 𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞𝑖

→ Compute a 𝟏-Center coreset 𝑪𝒊
for each line ℓ𝒊! 𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Has no effect since it

is the same weight for

all points

𝑪 = ራ𝑪𝒊

since a union of two

coresets is a coreset.

Coreset for 1-Line in 𝑅2

𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.

Coreset for 1-Line in 𝑅2

𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.

→ This adds another error

of 𝝐 ⋅ ෫𝑶𝑷𝑻

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ + 2𝜖 ⋅෫𝑂𝑃𝑇

≤ 1 + 8𝜖 ⋅ max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.

→ This adds another error

of 𝝐 ⋅ ෫𝑶𝑷𝑻

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ 2𝜖 ⋅෫𝑂𝑃𝑇

≤ 8𝜖 ⋅ 𝑂𝑃𝑇 ≤ 8𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

Coreset for 1-Line in 𝑅2

Total time:

𝑂(𝑛3).

Coreset size:

𝐶 ≤ 2 ⋅ #𝑙𝑖𝑛𝑒𝑠 = 2 ⋅
2

𝜖
=
4

𝜖
.

Coreset for 1-Line in 𝑅2

Total time:

𝑂(𝑛3).
Improvement:

Run the above algorithm using the streaming tree.

Run on batches of size 2 ⋅ 𝐶 =
8

𝜖
.

Total time:

O n ⋅ 𝑇𝑖𝑚𝑒𝐹𝑜𝑟𝐵𝑎𝑡𝑐ℎ = O 𝑛 ⋅
8

𝜖

3

.

Error for streaming tree:

The error increases to 1 + 𝜖 log 𝑛~ 1 + 𝜖 log 𝑛

→ Run with 𝜖′ =
𝜖

log 𝑛
.

Coreset size:

𝐶 ≤ 2 ⋅ #𝑙𝑖𝑛𝑒𝑠 = 2 ⋅
2

𝜖
=
4

𝜖
.

Off-line Coreset Construction

1) (Reduce): 𝐶 is a 1 + 𝜖 - (core) set for P if:
∀𝑞 ∈ 𝑄, 𝑓 𝑃, 𝑞 − 𝑓 𝐶, 𝑞 ≤ 𝜖𝑓 𝑃, 𝑞

2) (Merge): If C1 is a coreset for 𝑃1 and C2 is a coreset for 𝑃2, then:
𝑓 𝑃1 ∪ 𝑃2 − 𝑓 𝐶1 ∪ 𝐶2 ≤ 𝜖𝑓 𝑃1 ∪ 𝑃2

𝑪, 𝑪 =
𝒎

𝟐𝑷, 𝑷 = 𝒎 Input: A query space

𝑷,𝑸, 𝒇

Output: A (core) set 𝑪 for 𝐏, 𝑪 ≤
𝑷

𝟐

Black Box

129

2 8.5

Streaming

7

Black

Box

9.2 0
Black

Box

9 0Black

Box

82533

(𝑪𝟏)
𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕

for 𝑃1

𝑃1 𝑃2

(𝑪𝟐)
(𝟏 + 𝝐) − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕

for 𝐶1 ∪ 𝑃2

(𝑪𝟑)
(𝟏 + 𝝐) − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕

for 𝐶2 ∪ 𝑃3

𝑃3

Proof

𝐶1 = 𝑃1

𝐶2 is a coreset for 𝑃1 ∪ 𝑃2

𝐶𝑖 is a coreset for 𝐶𝑖−1 ∪ 𝑃𝑖

𝑓 𝑃1 ∪ 𝑃2 − 𝑓 𝐶2 ≤ 𝜖𝑓 𝑃1 ∪ 𝑃2

𝑓 𝐶2 ∪ 𝑃3 − 𝑓 𝐶3 ≤ 𝜖𝑓 𝐶2 ∪ 𝑃3

Need to prove that: 𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3 − 𝑓 𝐶3 ≤ 𝜖𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3

𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3 − 𝑓 𝐶3 ≤ 𝑓 𝑃1 ∪ 𝑃2 + 𝑓 𝑃3 − 𝑓 𝐶3 = ȁ
ȁ

𝑓 𝑃1 ∪ 𝑃2 + 𝑓 𝐶2 − 𝑓 𝐶2 +
𝑓 𝑃3 − 𝑓 𝐶3 ≤ 𝑓 𝑃1 ∪ 𝑃2 − 𝑓 𝐶2 + 𝑓 𝐶2 + 𝑓 𝑃3 − 𝑓 𝐶3 ≤ 𝜖𝑓 𝑃1 ∪ 𝑃2 +
𝑓 𝐶2 ∪ 𝑃3 − 𝑓 𝐶3 ≤ 𝜖𝑓 𝑃1 ∪ 𝑃2 + 𝜖𝑓 𝐶2 ∪ 𝑃3 ≤ 𝜖 𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3 + 𝑓 𝐶2 ≤
𝜖 𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3 + 2𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3 ≤ 𝑂(𝜖)𝑓 𝑃1 ∪ 𝑃2 ∪ 𝑃3

0129

2 8.5

Streaming

7

Black

Box
9.2 0

Black

Box

9 0
Black

Box

82533

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃1

𝟏 + 𝝐 𝟐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃1 ∪ 𝑃2

𝑃1 𝑃2

𝟏 + 𝝐 − 𝒄𝒐𝒓𝒆𝒔𝒆𝒕
for 𝑃2

