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Dynamic Data with Insertions and Deletions
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𝑃1 𝑃2 𝑃3 𝑃4

𝟐 − 𝟑 − 𝟒 tree

Coreset for 𝑃1 Coreset for 𝑃2 Coreset for 𝑃3 Coreset for 𝑃4

Coreset for 𝑃1 ∪ 𝑃2 Coreset for 𝑃3 ∪ 𝑃4

Coreset for 𝑃

𝑑𝑒𝑙(𝑥)

Need to update all the

coresets that depend on 𝑥.

#BadCoresets = Tree height = 𝑂 log𝑛

Time = 𝑶(𝐥𝐨𝐠𝒏 ⋅ 𝒄𝒐𝒓𝒆𝒔𝒆𝒕𝑻𝒊𝒎𝒆)

Dynamic Data with Insertions and Deletions



Dynamic Data with Insertions and Deletions

x

𝑃1 𝑃2 𝑃3 𝑃4

𝟐 − 𝟑 − 𝟒 tree

Coreset for 𝑃1 Coreset for 𝑃2 Coreset for 𝑃3 Coreset for 𝑃4

Coreset for 𝑃1 ∪ 𝑃2 Coreset for 𝑃3 ∪ 𝑃4

Coreset for 𝑃

𝑑𝑒𝑙(𝑥)

To update a coreset at some node 𝑦,

all the coresets in 𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑦) are 

needed.

Space = 𝑶(𝒏 ⋅ 𝒄𝒐𝒓𝒆𝒔𝒆𝒕𝑺𝒊𝒛𝒆)

Need to update all the

coresets that depend on 𝑥.

#BadCoresets = Tree height = 𝑂 log𝑛

Time = 𝑶(𝐥𝐨𝐠𝒏 ⋅ 𝒄𝒐𝒓𝒆𝒔𝒆𝒕𝑻𝒊𝒎𝒆)



Re-use of the 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 for 1-center

Reminder:

•We learned about coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟.

• Given 𝑃, 𝑄 in 𝑅𝑑, such coreset C ⊆ 𝑃 guarantee that for every 𝑞 ∈ 𝑄:

𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒 ≤ 𝒎𝒂𝒙
𝒄∈𝑪

𝒄 − 𝒒 + 𝑶 𝝐 ⋅ 𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒

𝑞

𝜖𝑟
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𝒑 − 𝒒

𝑞

𝜖𝑟

Question:

Can we use the same 

coreset for other 

problems/functions?

Re-use of the 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 for 1-center



Reminder:

•We learned about coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟.

• Given 𝑃, 𝑄 in 𝑅𝑑, such coreset C ⊆ 𝑃 guarantee that for every 𝑞 ∈ 𝑄:

𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒 ≤ 𝒎𝒂𝒙
𝒄∈𝑪

𝒄 − 𝒒 + 𝑶 𝝐 ⋅ 𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒

𝑞

𝜖𝑟

Question:

Can we use the same 

coreset for 

Sum of distances ?

Question:

Can we use the same 

coreset for other 

problems/functions?

Re-use of the 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 for 1-center



Reminder:

•We learned about coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟.

• Given 𝑃, 𝑄 in 𝑅𝑑, such coreset C ⊆ 𝑃 guarantee that for every 𝑞 ∈ 𝑄:
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𝑞

𝜖𝑟

Question:

Can we use the same 

coreset for 

Sum of distances ?

Question:

Can we use the same 

coreset for 

Sum of  squared 

distances ?

Question:

Can we use the same 

coreset for other 

problems/functions?
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Re-use of 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 𝑓𝑜𝑟 1 − 𝑐𝑒𝑛𝑡𝑒𝑟

• Given coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟, what error we get if we use it to measure 
sum, instead of max, of distances ?

Coreset for sum of distances ?

Claim:

∀𝑞 ∈ 𝑄: 

𝒑∈𝑷

𝒑 − 𝒒 ≤

𝒄∈𝑪

𝝎 𝒄 𝒄 − 𝒒 + 𝒏 ⋅ 𝑶 𝝐 ⋅ 𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒

• 𝑐𝑝 ≔ The representative of 𝑝

• ∀𝑐 ∈ 𝐶, 𝜔(𝑐) ≔ 𝑝 ∈ 𝑃 | 𝑐𝑝 = 𝑐



• 𝑐𝑝≔ The representative of 𝑝

• ∀𝑐 ∈ 𝐶, 𝜔(𝑐) ≔ 𝑝 ∈ 𝑃 | 𝑐𝑝 = 𝑐

• coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟 implies that 

∀ 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄: 𝒑 − 𝒒 ≤ 𝒄𝒑 − 𝒒 + 𝑶 𝝐 ⋅ 𝒎𝒂𝒙
𝒑∈𝑷

𝒑 − 𝒒

Coreset for sum of distances - Proof
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• Given coreset for 1 − 𝑐𝑒𝑛𝑡𝑒𝑟, what error we get if we use it to measure sum 
of squared, instead of max, distances ?

Coreset for sum of squared distances ?

• 𝑐𝑝 ≔ The representative of 𝑝

• Let’s look at the error:

∀ 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄: 𝒑 − 𝒒 𝟐 − 𝒄𝒑 − 𝒒
2

= 𝒑 𝟐 + 𝒒 𝟐 − 𝟐 ⋅ 𝒑𝑻𝒒 − 𝒄𝒑
𝟐
− 𝒒 𝟐 + 𝟐 ⋅ 𝒄𝒑

𝑻𝒒

≤ 𝒑 𝟐 − 𝒄𝒑
𝟐
+ 𝟐 ⋅ 𝒄𝒑 − 𝒑

𝑻
𝒒

≤ ? ?
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Distance Function (Metric)

•A distance function is a function that defines a distance between each pair of 
elements of a set 𝑋

𝑑: 𝑋 × 𝑋 → [0,∞)

•A distance function satisfies the following conditions for every 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1) 𝑑 𝑥, 𝑦 ≥ 0 and 𝑑 𝑥, 𝑦 = 0 ↔ 𝑥 = 𝑦 non-negativity axiom.

2) 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥) symmetry.

3) 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧) triangle-inequality.



Distance Function (Metric)

• Illustration:



Metric Space

•A metric space is an ordered pair (𝑋, 𝑑) where 𝑋 is a set and 𝑑: X × 𝑋 → [0,∞)
is a distance function on the set 𝑋.

Metric space 𝑅, 𝑑 ,
∀𝑥, 𝑦 ∈ 𝑅2: 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 2

Metric space 𝑅, 𝑑∞ ,
∀𝑥, 𝑦 ∈ 𝑅2: 𝑑∞ 𝑥, 𝑦 = 𝑥 − 𝑦 ∞

Metric space 𝑅, 𝑑1 ,
∀𝑥, 𝑦 ∈ 𝑅2: 𝑑1 𝑥, 𝑦 = 𝑥 − 𝑦 1



Definitions

1) 𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz:

A monotonic non-decreasing function 𝐷: 0,∞ → [0,∞) satisfies the 
𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz condition if there is 𝑟 > 0 such that for every 𝑥 > 0 and 
Δ > 1 it holds that:

𝐷 Δ𝑥 ≤ Δ𝑟𝐷(𝑥)

2) Weak triangle inequality:

Let 𝐷: 𝑋 × 𝑋 → 0,∞ . The function 𝐷 satisfies the weak triangle inequality if 
there is 𝜌 > 0 such that for every 𝑝, 𝑝′, 𝑐 ∈ 𝑋3 the following holds: 

𝐷 𝑝, 𝑐 ≤ 𝜌 𝐷 𝑝, 𝑝′ + 𝐷 𝑝′, 𝑐

Lipschitz constant



Definitions

3) Property 1:

Let 𝐷: 𝑋 × 𝑋 → 0,∞ . For every 𝜓 ∈ 0,
1

2
there is a real 𝜙 ≥ 0 such that 

for every 𝑝, 𝑝′, 𝑐 ∈ 𝑋3 it holds that

𝐷 𝑝, 𝑐 − 𝐷 𝑝′, 𝑐 ≤ 𝜙𝐷 𝑝, 𝑝′ + 𝜓𝐷(𝑝, 𝑐)



Main Claims

Let (𝑋, 𝑑𝑖𝑠𝑡) be a metric space and let 𝑓: 0,∞ → [0,∞) be a function that 
satisfies the 𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz condition.

Define 𝑓𝑎𝑟: 𝑋2 → [0,∞) to be a mapping from every 𝑝, 𝑐 ∈ 𝑋 to

𝑓𝑎𝑟 𝑝, 𝑐 = 𝑓(𝑑𝑖𝑠𝑡(𝑝, 𝑐))

• Claim 1:

The function 𝑓𝑎𝑟 satisfies the weak triangle inequality for 𝜌 = max 2𝑟−1, 1 , i.e, 
for every 𝑝, 𝑞, 𝑐 ∈ 𝑋3:

𝑓𝑎𝑟 𝑝, 𝑞 ≤ 𝜌 𝑓𝑎𝑟 𝑝, 𝑐 + 𝑓𝑎𝑟 𝑐, 𝑞



Main Claims

• Proof of Claim 1:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 . Need to prove for 
𝜌 = max 2𝑟−1, 1 it holds that:

𝑓𝑎𝑟 𝑝, 𝑞 = 𝒇 𝒛 ≤ 𝝆 ⋅ 𝒇 𝒙 + 𝒇 𝒚 = 𝜌 ⋅ 𝑓𝑎𝑟 𝑝, 𝑐 + 𝑓𝑎𝑟 𝑐, 𝑞
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𝑓𝑎𝑟 𝑝, 𝑞 = 𝒇 𝒛 ≤ 𝝆 ⋅ 𝒇 𝒙 + 𝒇 𝒚 = 𝜌 ⋅ 𝑓𝑎𝑟 𝑝, 𝑐 + 𝑓𝑎𝑟 𝑐, 𝑞

By the triangle inequality and the fact that 𝑓 Δx ≤ Δ𝑟𝑓 𝑥 , for every 𝜔 ∈ (0,1) it 
holds that:

𝑓 𝑧 ≤ 𝑓 𝑥 + 𝑦 = 𝜔 ⋅ 𝑓 𝑥 + 𝑦 + 1 − 𝜔 ⋅ 𝑓 𝑥 + 𝑦
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• Proof of Claim 1:
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≤ 𝜔 ⋅ 𝑓
𝑥 𝑥+𝑦

𝑥
+ 1 − 𝜔 ⋅ 𝑓

𝑦 𝑥+𝑦

𝑦

≤ 𝜔 ⋅ 𝑓 𝑥
𝑥+𝑦

𝑥

𝑟
+ 1 − 𝜔 𝑓 𝑦

𝑥+𝑦

𝑦

𝑟
𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz



Main Claims

• Proof of Claim 1:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 . Need to prove for 
𝜌 = max 2𝑟−1, 1 it holds that:

𝑓𝑎𝑟 𝑝, 𝑞 = 𝒇 𝒛 ≤ 𝝆 ⋅ 𝒇 𝒙 + 𝒇 𝒚 = 𝜌 ⋅ 𝑓𝑎𝑟 𝑝, 𝑐 + 𝑓𝑎𝑟 𝑐, 𝑞

By the triangle inequality and the fact that 𝑓 Δx ≤ Δ𝑟𝑓 𝑥 , for every 𝜔 ∈ (0,1) it 
holds that:

𝑓 𝑧 ≤ 𝑓 𝑥 + 𝑦 = 𝜔 ⋅ 𝑓 𝑥 + 𝑦 + 1 − 𝜔 ⋅ 𝑓 𝑥 + 𝑦

≤ 𝜔 ⋅ 𝑓
𝑥 𝑥+𝑦

𝑥
+ 1 − 𝜔 ⋅ 𝑓

𝑦 𝑥+𝑦

𝑦

≤ 𝜔 ⋅ 𝑓 𝑥
𝑥+𝑦

𝑥

𝑟
+ 1 − 𝜔 𝑓 𝑦

𝑥+𝑦

𝑦

𝑟

= 𝑥 + 𝑦 𝑟 𝜔⋅𝑓 𝑥

𝑥𝑟
+

1−𝜔 𝑓 𝑦

𝑦𝑟

𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz



Main Claims

• Proof of Claim 1:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 . Need to prove for 
𝜌 = max 2𝑟−1, 1 it holds that:

𝑓𝑎𝑟 𝑝, 𝑞 = 𝒇 𝒛 ≤ 𝝆 ⋅ 𝒇 𝒙 + 𝒇 𝒚 = 𝜌 ⋅ 𝑓𝑎𝑟 𝑝, 𝑐 + 𝑓𝑎𝑟 𝑐, 𝑞

By the triangle inequality and the fact that 𝑓 Δx ≤ Δ𝑟𝑓 𝑥 , for every 𝜔 ∈ (0,1) it 
holds that:

𝑓 𝑧 ≤ 𝑓 𝑥 + 𝑦 = 𝜔 ⋅ 𝑓 𝑥 + 𝑦 + 1 − 𝜔 ⋅ 𝑓 𝑥 + 𝑦

≤ 𝜔 ⋅ 𝑓
𝑥 𝑥+𝑦

𝑥
+ 1 − 𝜔 ⋅ 𝑓

𝑦 𝑥+𝑦

𝑦

≤ 𝜔 ⋅ 𝑓 𝑥
𝑥+𝑦

𝑥

𝑟
+ 1 − 𝜔 𝑓 𝑦

𝑥+𝑦

𝑦

𝑟

= 𝑥 + 𝑦 𝑟 𝜔⋅𝑓 𝑥

𝑥𝑟
+

1−𝜔 𝑓 𝑦

𝑦𝑟

=
𝑥+𝑦 𝑟

𝑥𝑟+𝑦𝑟
⋅ 𝑓 𝑥 + 𝑓 𝑦

𝜌
By substituting 𝜔 =

𝑥𝑟

𝑥𝑟+𝑦𝑟

𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz



Main Claims

Let (𝑋, 𝑑𝑖𝑠𝑡) be a metric space and let 𝑓: 0,∞ → [0,∞) be a function that satisfies 
the 𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz condition.

Define 𝑓𝑎𝑟: 𝑋2 → [0,∞) to be a mapping from every 𝑝, 𝑐 ∈ 𝑋 to

𝑓𝑎𝑟 𝑝, 𝑐 = 𝑓(𝑑𝑖𝑠𝑡(𝑝, 𝑐))

• Claim 2:

The function 𝑓𝑎𝑟 satisfies property 1 for every 𝜓 ∈ 0,
1

2
and 𝜙 = max

𝑟

𝜓

𝑟
, 1



Main Claims

• Proof of Claim 2:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 , 𝜓 ∈ 0,
1

2
and 𝜙 =

𝑟

𝜓

𝑟
. 

Need to prove that:

𝑓𝑎𝑟 𝑝, 𝑐 − 𝑓𝑎𝑟(𝑐, 𝑞) = 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝝓𝒇 𝒛 + 𝝍𝒇(𝒙) = 𝜙𝑓𝑎𝑟(𝑝, 𝑞) + 𝜓𝑓𝑎𝑟(𝑝, 𝑐)

Assume 𝑓 𝑥 > 𝜙𝑓(𝑧), otherwise Claim 2 holds trivially.



Main Claims

• Proof of Claim 2:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 , 𝜓 ∈ 0,
1

2
and 𝜙 =

𝑟

𝜓

𝑟
. 

Need to prove that:

𝑓𝑎𝑟 𝑝, 𝑐 − 𝑓𝑎𝑟(𝑐, 𝑞) = 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝝓𝒇 𝒛 + 𝝍𝒇(𝒙) = 𝜙𝑓𝑎𝑟(𝑝, 𝑞) + 𝜓𝑓𝑎𝑟(𝑝, 𝑐)

Assume 𝑓 𝑥 > 𝜙𝑓(𝑧), otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that 𝑓 𝑥 = 𝑓 𝑦 ⋅
𝑥

𝑦
≤

𝑥

𝑦

𝑟
⋅ 𝑓 𝑦



Main Claims

• Proof of Claim 2:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 , 𝜓 ∈ 0,
1

2
and 𝜙 =

𝑟

𝜓

𝑟
. 

Need to prove that:

𝑓𝑎𝑟 𝑝, 𝑐 − 𝑓𝑎𝑟(𝑐, 𝑞) = 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝝓𝒇 𝒛 + 𝝍𝒇(𝒙) = 𝜙𝑓𝑎𝑟(𝑝, 𝑞) + 𝜓𝑓𝑎𝑟(𝑝, 𝑐)

Assume 𝑓 𝑥 > 𝜙𝑓(𝑧), otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that 𝑓 𝑥 = 𝑓 𝑦 ⋅
𝑥

𝑦
≤

𝑥

𝑦

𝑟
⋅ 𝑓 𝑦

→ 𝑓 𝑦 ≥ 𝑓 𝑥 ⋅
𝑦

𝑥

𝑟



Main Claims

• Proof of Claim 2:

Let 𝑥 = 𝑑𝑖𝑠𝑡 𝑝, 𝑐 , 𝑦 = 𝑑𝑖𝑠𝑡 𝑐, 𝑞 , 𝑧 = 𝑑𝑖𝑠𝑡 𝑝, 𝑞 , 𝜓 ∈ 0,
1

2
and 𝜙 =

𝑟

𝜓

𝑟
. 

Need to prove that:

𝑓𝑎𝑟 𝑝, 𝑐 − 𝑓𝑎𝑟(𝑐, 𝑞) = 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝝓𝒇 𝒛 + 𝝍𝒇(𝒙) = 𝜙𝑓𝑎𝑟(𝑝, 𝑞) + 𝜓𝑓𝑎𝑟(𝑝, 𝑐)

Assume 𝑓 𝑥 > 𝜙𝑓(𝑧), otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that 𝑓 𝑥 = 𝑓 𝑦 ⋅
𝑥

𝑦
≤

𝑥

𝑦

𝑟
⋅ 𝑓 𝑦

→ 𝑓 𝑦 ≥ 𝑓 𝑥 ⋅
𝑦

𝑥

𝑟

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

𝑟 = −3 𝑟 = 3



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝑓 𝑥 − 𝑓 𝑥 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥

= 𝑓 𝑥 ⋅ 𝑟
𝑥 − 𝑦

𝑥



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝑓 𝑥 − 𝑓 𝑥 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥

= 𝑓 𝑥 ⋅ 𝑟
𝑥 − 𝑦

𝑥
≤ 𝑓 𝑥 ⋅ 𝑟

𝑧

𝑥

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝑓 𝑥 − 𝑓 𝑥 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥

= 𝑓 𝑥 ⋅ 𝑟
𝑥 − 𝑦

𝑥
≤ 𝑓 𝑥 ⋅ 𝑟

𝑧

𝑥

≤ 𝑓 𝑥 ⋅ 𝑟𝜙
1
𝑟

Assumption:

𝜙𝑓 𝑧 < 𝑓 𝑥

→ 𝑓
𝑧

𝜙
1
𝑟

≤ 𝜙𝑓 𝑧 < 𝑓 𝑥

→
𝑧

𝜙
1
𝑟

≤ 𝑧 < 𝑥 since 𝑓 is non-

decreasing

→
𝒛

𝒙
< 𝝓

𝟏
𝒓



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥

= 𝑓 𝑥 ⋅ 𝑟
𝑥 − 𝑦

𝑥
≤ 𝑓 𝑥 ⋅ 𝑟

𝑧

𝑥

≤ 𝑓 𝑥 ⋅ 𝑟𝜙
1
𝑟 ≤ 𝜓𝑓 𝑥

Assumption:

𝜙𝑓 𝑧 < 𝑓 𝑥

→ 𝑓
𝑧

𝜙
1
𝑟

≤ 𝜙𝑓 𝑧 < 𝑓 𝑥

→
𝑧

𝜙
1
𝑟

≤ 𝑧 < 𝑥 since 𝑓 is non-

decreasing

→
𝒛

𝒙
< 𝝓

𝟏
𝒓

Since 𝜙 =
𝑟

𝜓

𝑟



Main Claims

• Proof of Claim 2:

Hence, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟
.

For every 𝜔 ≥ 0 it holds that 1 − 𝜔𝑟 ≤ 𝑟 1 − 𝜔 .

→ 𝒇 𝒙 − 𝒇 𝒚 ≤ 𝑓 𝑥 ⋅ 1 −
𝑦

𝑥

𝑟

≤ 𝑓 𝑥 ⋅ 𝑟 1 −
𝑦

𝑥

= 𝑓 𝑥 ⋅ 𝑟
𝑥 − 𝑦

𝑥
≤ 𝑓 𝑥 ⋅ 𝑟

𝑧

𝑥

≤ 𝑓 𝑥 ⋅ 𝑟𝜙
1
𝑟 ≤ 𝜓𝑓 𝑥 ≤ 𝝓𝒇 𝒛 + 𝝍𝒇 𝒙

Assumption:

𝜙𝑓 𝑧 < 𝑓 𝑥

→ 𝑓
𝑧

𝜙
1
𝑟

≤ 𝜙𝑓 𝑧 < 𝑓 𝑥

→
𝑧

𝜙
1
𝑟

≤ 𝑧 < 𝑥 since 𝑓 is non-

decreasing

→
𝒛

𝒙
< 𝝓

𝟏
𝒓

Since 𝜙 =
𝑟

𝜓

𝑟



Main Claims

Let (𝑋, 𝑑𝑖𝑠𝑡) be a metric space and let 𝑓: 0,∞ → [0,∞) be a function that satisfies 
the 𝐿𝑜𝑔-𝐿𝑜𝑔 Lipschitz condition.

Define 𝑓𝑎𝑟: 𝑋2 → [0,∞) to be a mapping from every 𝑝, 𝑐 ∈ 𝑋 to

𝑓𝑎𝑟 𝑝, 𝑐 = 𝑓(𝑑𝑖𝑠𝑡(𝑝, 𝑐))

• Claim 3: (Tighter bound than in Claim 2)

The function 𝑓𝑎𝑟 satisfies property 1 for every 𝜓 ∈ 0,
1

2
and 

𝜙 = max
𝑟−1

𝜓

𝑟−1
, 1 if 𝑟 > 1.



General Bi-creteria Algorithm

𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

𝑦2

𝒀𝟏 = 𝒚𝟏, … , 𝒚𝜷

𝑦1



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

𝑦2

𝑦1

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

𝒀𝟏 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

𝑦1

𝑦2

𝒀𝟏 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.

𝑦1

𝑦2

𝒀𝟏 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.

𝑦1

𝑦2

𝒀𝟏 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

𝑦1 𝑦2

𝒀𝟐 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

𝑦1 𝑦2

𝒀𝟐 = 𝒚𝟏, … , 𝒚𝜷

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

𝑦1 𝑦2

𝒀𝟐 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

𝑦1 𝑦2

𝒀𝟐 = 𝒚𝟏, … , 𝒚𝜷

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.

𝑦1 𝑦2

𝒀𝟐 = 𝒚𝟏, … , 𝒚𝜷



𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷):

1) Compute 𝑌𝑖: a 
3

4
,
1

2
, 𝛼, 𝛽 -𝑎𝑝𝑝𝑟𝑜𝑥

for the specific problem 𝑃𝑖 , 𝑑𝑖𝑠𝑡 .

General Bi-creteria Algorithm

2) Compute 𝐺𝑖: the 
1

2
⋅
3 𝑃

4

points 𝑝 ∈ 𝑃𝑖 with smallest value 

𝑑𝑖𝑠𝑡 𝑝, 𝑌𝑖 .

3) Remove 𝐺𝑖 from the set of point: 

𝑃𝑖+1 = 𝑃𝑖\𝐺𝑖 and go to (𝟏) if 

𝑃𝑖+1 ≥ 20.

𝒀 = 𝒀𝟏 ∪ 𝒀𝟐 ∪⋯∪ 𝒀𝒊



General Bi-creteria Algorithm

• Claim:

The algorithm 𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷) returns an 

𝑂 𝛼 , 𝑂 𝛽 log 𝑛 -𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. 
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• Claim:
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𝑂 𝛼 , 𝑂 𝛽 log 𝑛 -𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. 

log 𝑛 recursive iterations, 

each returns an 𝛼, 𝛽 -approximation
Need to prove



General Bi-creteria Algorithm

• Claim:

The algorithm 𝑩𝑰𝑪𝑹𝑬𝑻𝑬𝑹𝑰𝑨(𝑷, 𝒅𝒊𝒔𝒕, 𝝐, 𝜶, 𝜷) returns an 

𝑂 𝛼 , 𝑂 𝛽 log 𝑛 -𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. 

• Proof:

log 𝑛 recursive iterations, 

each returns an 𝛼, 𝛽 -approximation
Need to prove



Let 𝑌∗ be any set of 𝑘 points in 𝑅𝑑



Let 𝑌∗ be any set of 𝑘 points in 𝑅𝑑



Let 𝑌∗ be any set of 𝑘 points in 𝑅𝑑

Consider 𝑌𝑖 that is constructed during the 𝑖𝑡ℎ iteration



A point 𝑏 ∈ 𝑃 is bad for 𝑌𝑖, if:

𝑑𝑖𝑠𝑡 𝑏, 𝑌𝑖 > 2 ⋅ 𝑑𝑖𝑠𝑡(𝑏, 𝑌∗)

b



A point 𝑔 ∈ 𝑃 is good for 𝑌𝑖 otherwise:

𝑑𝑖𝑠𝑡 𝑔, 𝑌𝑖 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡(𝑏, 𝑌∗)

g



Main Technical Theorem

We can map every bad point 𝑏 ∈ 𝑃𝑖 to a distinct good point 𝑔 ∈ 𝑃𝑖+1

g

b



𝑑𝑖𝑠𝑡 𝑏, 𝑌 ≤ 𝑑𝑖𝑠𝑡 𝑏, 𝑌𝑖 , because 𝑌𝑖 ⊆ 𝑌.

Since 𝑏 ∈ 𝑃𝑖 and 𝑔 ∈ 𝑃𝑖+1 :

𝑑𝑖𝑠𝑡 𝑏, 𝑌𝑖 ≤ 𝑑𝑖𝑠𝑡 𝑔, 𝑌𝑖

Since 𝑔 is good for 𝑌𝑖 :

𝑑𝑖𝑠𝑡 𝑔, 𝑌𝑖 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗



𝑑𝑖𝑠𝑡 𝑏, 𝑌 ≤ 𝑑𝑖𝑠𝑡 𝑏, 𝑌𝑖 , because 𝑌𝑖 ⊆ 𝑌.

Since 𝑏 ∈ 𝑃𝑖 and 𝑔 ∈ 𝑃𝑖+1 :

𝑑𝑖𝑠𝑡 𝑏, 𝑌𝑖 ≤ 𝑑𝑖𝑠𝑡 𝑔, 𝑌𝑖

Since 𝑔 is good for 𝑌𝑖 :

𝑑𝑖𝑠𝑡 𝑔, 𝑌𝑖 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗

𝑑𝑖𝑠𝑡 𝑏, 𝑌 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗



Bi-Criteria for 𝑘-Median



𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝑌 =

𝑔

𝑑𝑖𝑠𝑡 𝑔, 𝑌 +

𝑏

𝑑𝑖𝑠𝑡 𝑏, 𝑌

≤

𝑔

2 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗ +

𝑔

2 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗

≤

𝑔

4 ⋅ 𝑑𝑖𝑠𝑡 𝑔, 𝑌∗



Proof of the Technical Theorem

• The number of bad points is at most:

𝐵 =
𝑌𝑖
8

• |𝑌𝑖+1| =
𝑌𝑖
2

The number of good points in 𝑌𝑖+1 is at most:

𝑌𝑖+1 − 𝐵 ≥
𝑌𝑖
2

−
𝑌𝑖
8

≥ |B|



Claim: Only 𝐵0 =
𝑌𝑖

8𝑘
points are bad for 𝑞 ∈ 𝑌𝑖

𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡(𝑝, 𝑞∗)

q

q¤

p



𝐵0: the 
𝑌𝑖

8𝑘
closest points to 𝑞∗

q¤



𝐵0: the 
𝑌𝑖

8𝑘
closest points to 𝑞∗

q¤

q

𝐵0 contains 𝑞 ∈ 𝑌𝑖 (
1

8𝑘
− 𝑛𝑒𝑡)



For every yellow point 𝑝 ∈ 𝑃\B0:

q¤

q

𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝑑𝑖𝑠𝑡 𝑝, 𝑞∗ + 𝑑𝑖𝑠𝑡 𝑞∗, 𝑞
≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞∗

p



All the yellow points are good for 𝑌𝑖

q¤

q

𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞∗

p



Only the black points B0 are bad for 𝑌𝑖

q¤

q

𝐵0 =
𝑌𝑖
8𝑘

p


