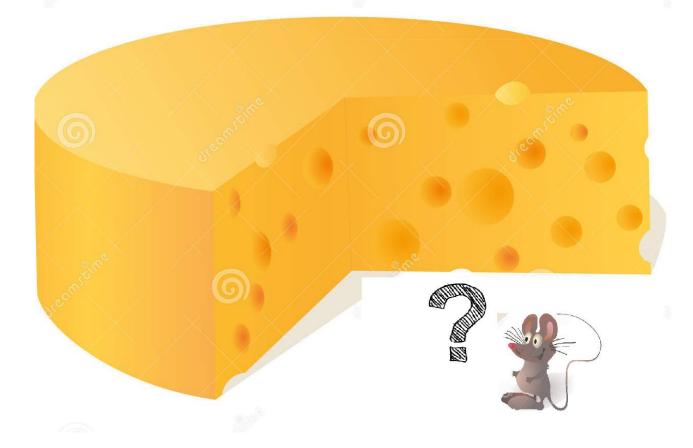
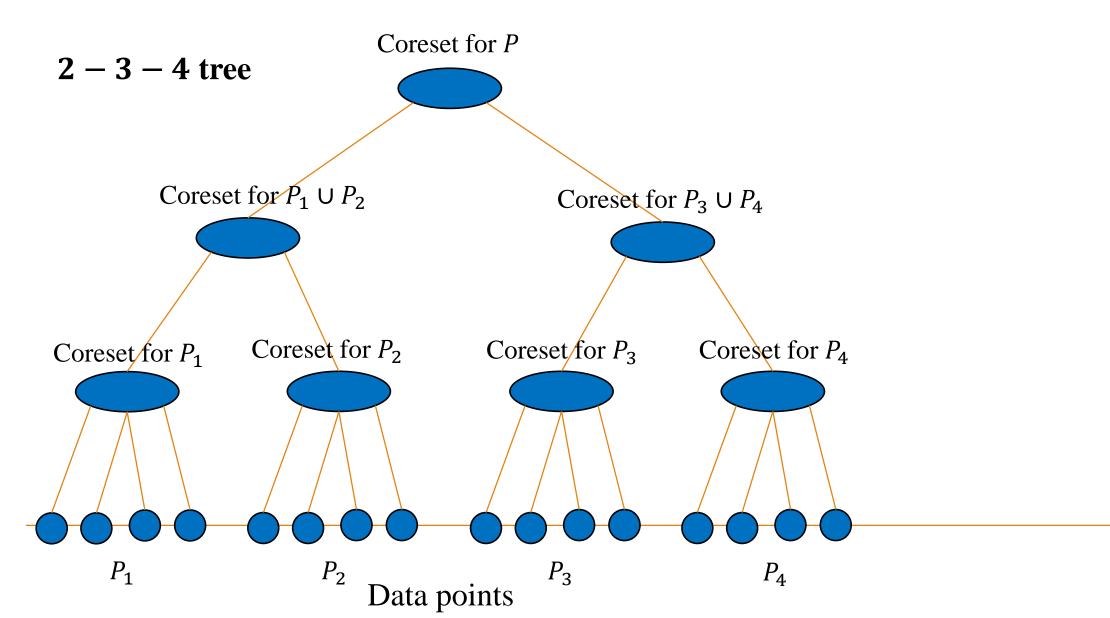
Big Data Class

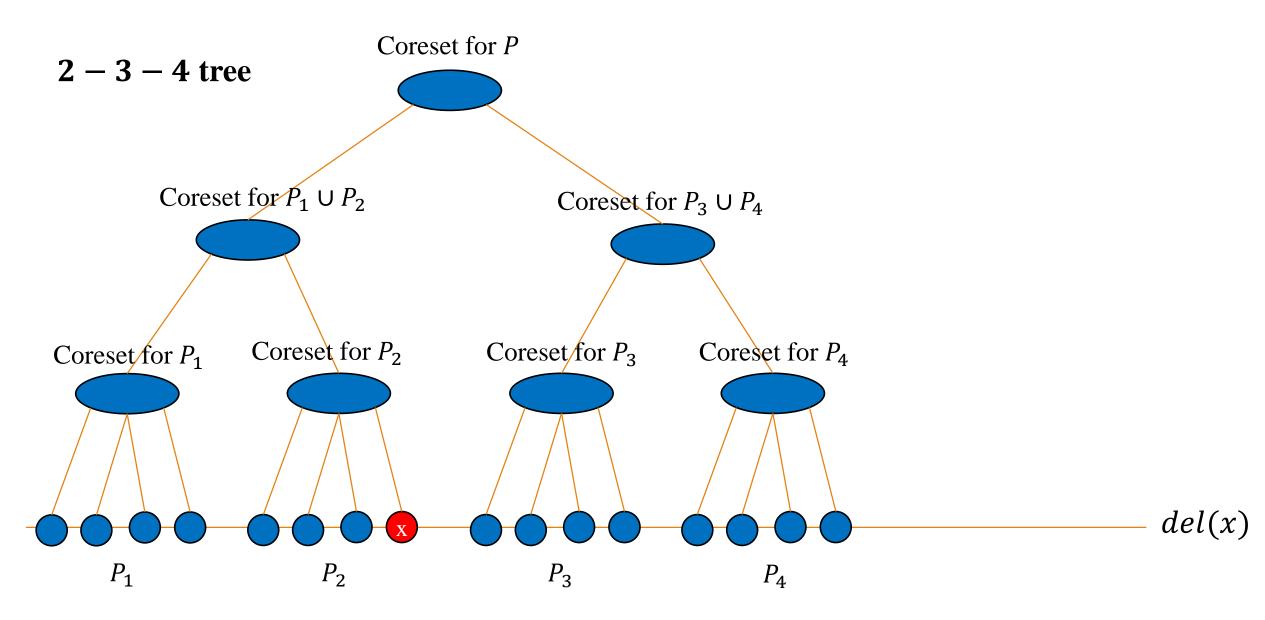


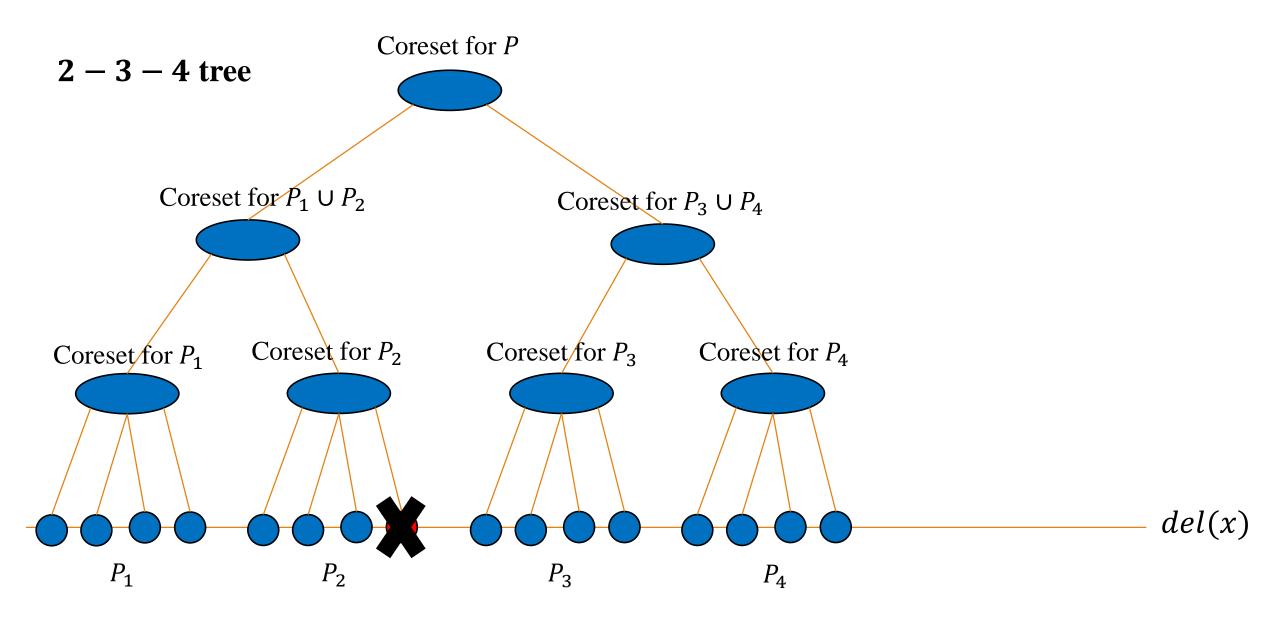
LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN ALAA MAALOUF

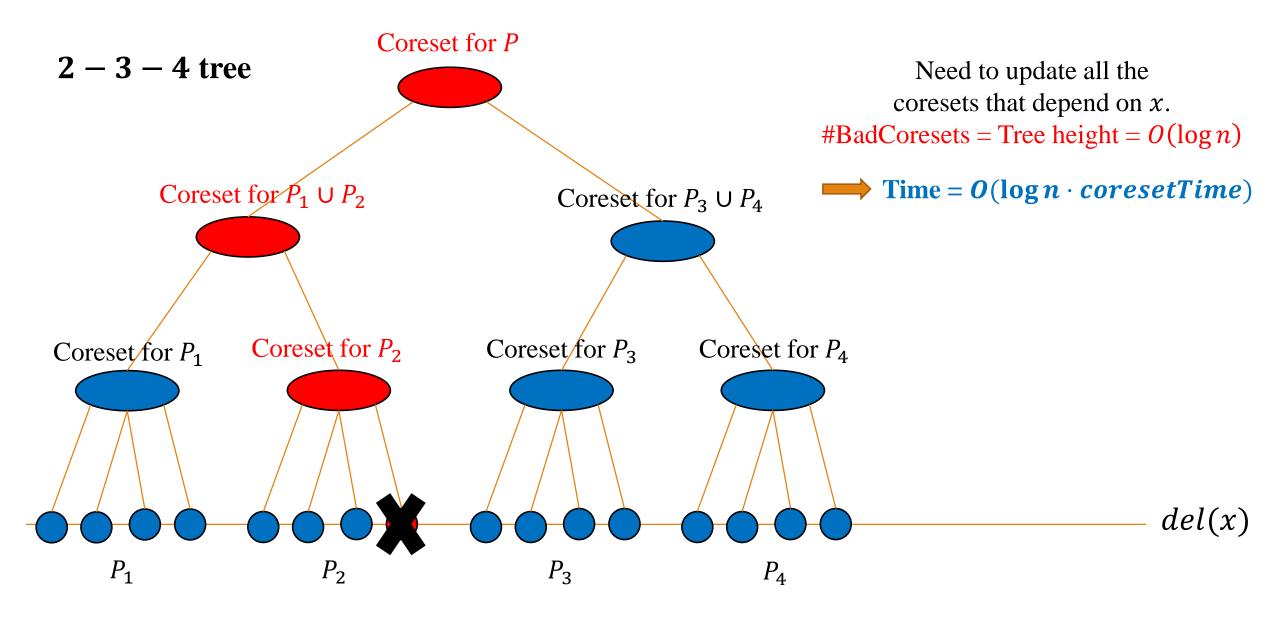
אוניברסיטת חיפה University of Haifa جامعة حيفا

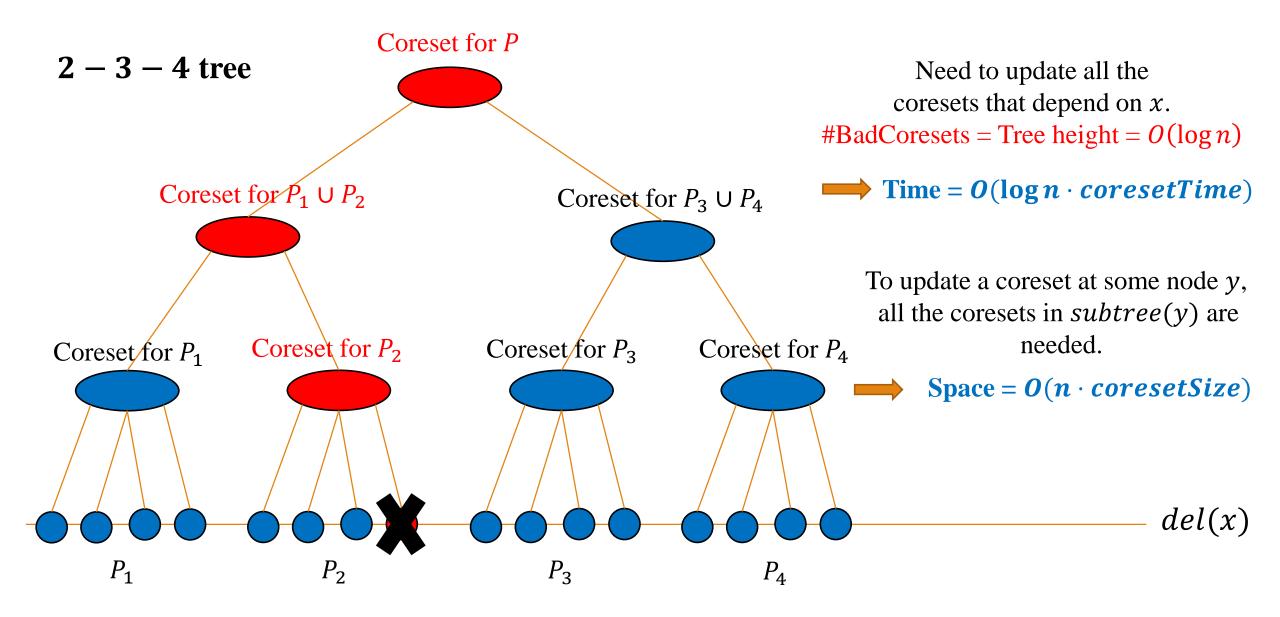
Department of Computer Science, University of Haifa.









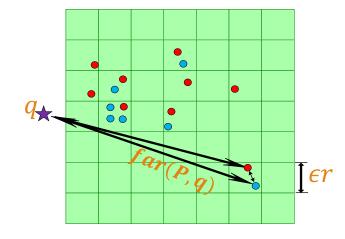


Reminder:

•We learned about coreset for 1 - center.

• Given *P*, *Q* in \mathbb{R}^d , such coreset $\mathbb{C} \subseteq \mathbb{P}$ guarantee that for every $q \in Q$:

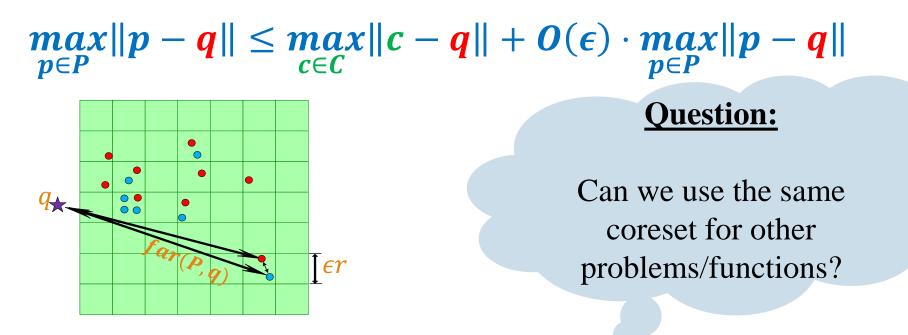
$$\max_{p\in P} \|p-q\| \leq \max_{c\in C} \|c-q\| + O(\epsilon) \cdot \max_{p\in P} \|p-q\|$$



Reminder:

•We learned about coreset for 1 - center.

• Given *P*, *Q* in \mathbb{R}^d , such coreset $\mathbb{C} \subseteq \mathbb{P}$ guarantee that for every $q \in Q$:



Reminder:

Question:

Can we use the same coreset for •We learned about coreset for 1 – *center*. Sum of distances ? • Given P, Q in \mathbb{R}^d , such coreset $\mathbb{C} \subseteq \mathbb{P}$ guarantee the for $\mathcal{A} \subseteq Q$: $\max_{p \in P} \|p - q\| \le \max_{c \in C} \|c - q\| + O(\epsilon) \cdot \max_{p \in P} \|p - q\|$ **Question:** \bigcirc Can we use the same coreset for other *Er* problems/functions?

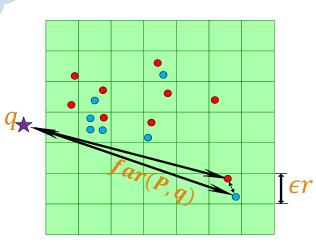
Question:

Can we use the same
coreset forCan we use the same
coreset forSum of squared
distances ?enter.Can we use the same
coreset forSum of squared
distances ?enter.Sum of distances ?et $C \subseteq P$ guarantee thfor $c \rightarrow c \neq q \in Q$:

 $\sum_{e \in C} q \| \leq \max_{c \in C} \| c - q \| + O(\epsilon) \cdot \max_{p \in P} \| p - q \|$

Question:

Can we use the same coreset for other problems/functions?



Question:

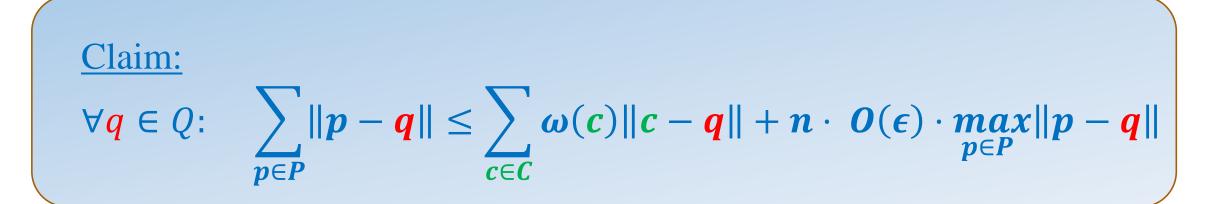
Re

Re-use of *coreset for* 1 – *center*

Coreset for sum of distances ?

• Given coreset for 1 – *center*, what error we get if we use it to measure sum, instead of max, of distances ?

•
$$c_p \coloneqq$$
 The representative of p
• $\forall c \in C$, $\omega(c) \coloneqq |\{p \in P \mid c_p = c\}|$



Coreset for sum of distances - Proof

- $c_p \coloneqq$ The representative of p
- $\forall c \in C$, $\omega(c) \coloneqq |\{p \in P \mid c_p = c\}|$
- coreset for 1 center implies that

 $\forall p \in P, q \in Q: \|p - q\| \le \|c_p - q\| + O(\epsilon) \cdot \max_{p \in P} \|p - q\|$

Coreset for sum of distances - Proof

- $c_p \coloneqq$ The representative of p
- $\forall c \in C$, $\omega(c) \coloneqq |\{p \in P \mid c_p = c\}|$
- coreset for 1 *center* implies that $\forall p \in P, q \in Q: ||p - q|| \le ||c_p - q|| + O(\epsilon) \cdot \max_{p \in P} ||p - q||$ $\forall \boldsymbol{q} \in \boldsymbol{Q}: \quad \sum_{\boldsymbol{p} \in \boldsymbol{P}} \|\boldsymbol{p} - \boldsymbol{q}\| \leq \sum_{\boldsymbol{p} \in \boldsymbol{P}} \left(\|\boldsymbol{c}_{\boldsymbol{p}} - \boldsymbol{q}\| + \boldsymbol{O}(\boldsymbol{\epsilon}) \cdot \max_{\boldsymbol{p} \in \boldsymbol{P}} \|\boldsymbol{p} - \boldsymbol{q}\| \right)$ $=\sum_{\underline{a}} \|c_p - q\| + n \cdot O(\epsilon) \cdot \max_{p \in P} \|p - q\|$ $= \sum \omega(c) \|c - q\| + n \cdot O(\epsilon) \cdot \max_{p \in P} \|p - q\|$

Re-use of the *coreset* for 1-center Coreset for sum of distances - Proof • $c_p \coloneqq$ The representative of p**Question:** • $\forall c \in C$, $\omega(c) \coloneqq |\{p \in C\}|$ • coreset for 1 – *cent* Can we use the same coreset for $\max_{p \in P} \|p - q\|$ $\forall p \in P, q \in Q$ Sum of distances ? $\forall \boldsymbol{q} \in \boldsymbol{Q}: \quad \sum_{\boldsymbol{p} \in \boldsymbol{P}} \|\boldsymbol{p} - \boldsymbol{q}\| \leq \sum_{\boldsymbol{p} \in \boldsymbol{P}} \left(\|\boldsymbol{p} - \boldsymbol{q}\| + \boldsymbol{O}(\boldsymbol{\epsilon}) \cdot \max_{\boldsymbol{p} \in \boldsymbol{P}} \|\boldsymbol{p} - \boldsymbol{q}\| \right)$ $= \sum_{\mathbf{q}} \|c_p - \mathbf{q}\| + n \cdot \mathbf{O}(\epsilon) \cdot \max_{p \in P} \|p - \mathbf{q}\|$ $= \sum \omega(c) \|c - q\| + n \cdot O(\epsilon) \cdot \max_{p \in P} \|p - q\|$

Coreset for sum of squared distances ?

• Given coreset for 1 – *center*, what error we get if we use it to measure sum of squared, instead of max, distances ?

- $c_p \coloneqq$ The representative of p
- Let's look at the error:

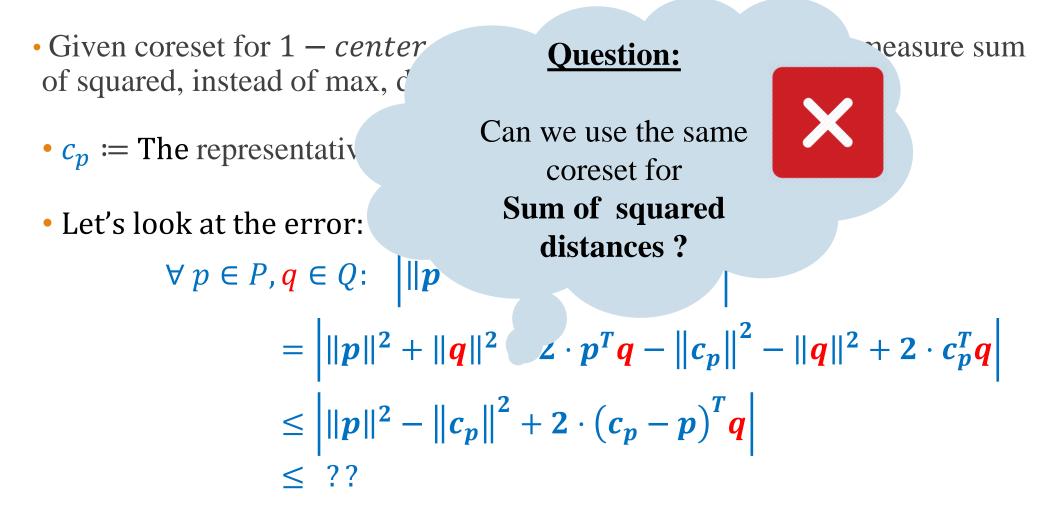
$$\forall p \in P, q \in Q: \quad ||p - q||^{2} - ||c_{p} - q||^{2} |$$

$$= \left| ||p||^{2} + ||q||^{2} - 2 \cdot p^{T}q - ||c_{p}||^{2} - ||q||^{2} + 2 \cdot c_{p}^{T}q \right|$$

$$\leq \left| ||p||^{2} - ||c_{p}||^{2} + 2 \cdot (c_{p} - p)^{T}q \right|$$

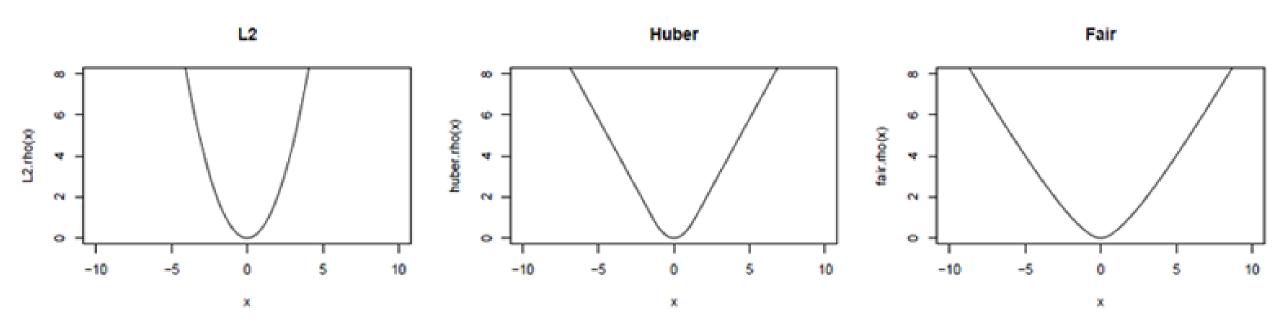
$$\leq ??$$

Coreset for sum of squared distances ?



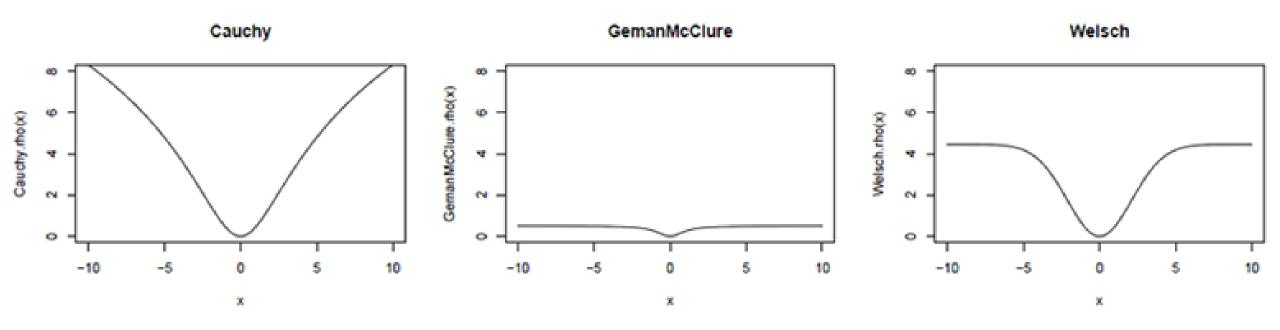
Motivation

M-estimators:



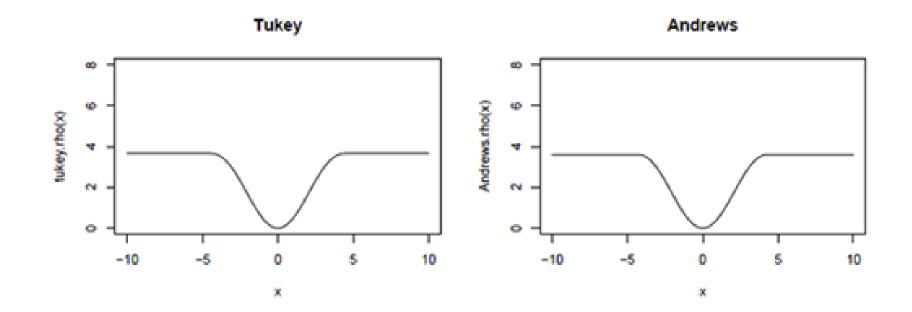
Motivation

M-estimators:



Motivation

M-estimators:

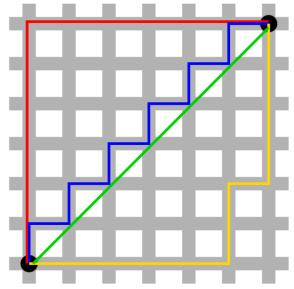


Distance Function (Metric)

• A distance function is a function that defines a distance between each pair of elements of a set *X*

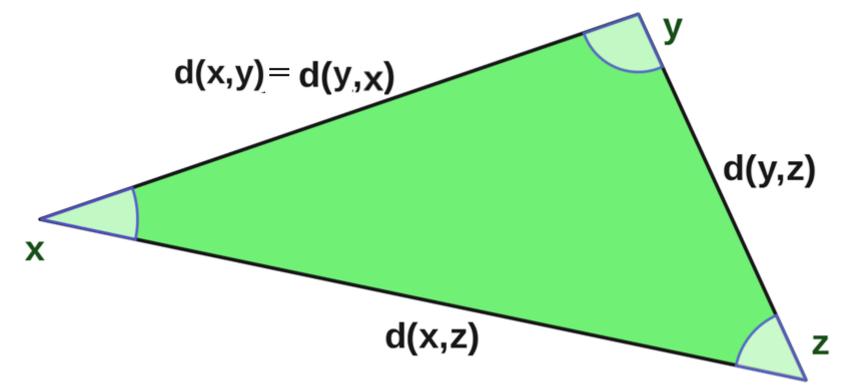
 $d: X \times X \to [0, \infty)$

A distance function satisfies the following conditions for every x, y, z ∈ X:
1) d(x, y) ≥ 0 and d(x, y) = 0 ↔ x = y non-negativity axiom.
2) d(x, y) = d(y, x) symmetry.
3) d(x, z) ≤ d(x, y) + d(y, z) triangle-inequality.



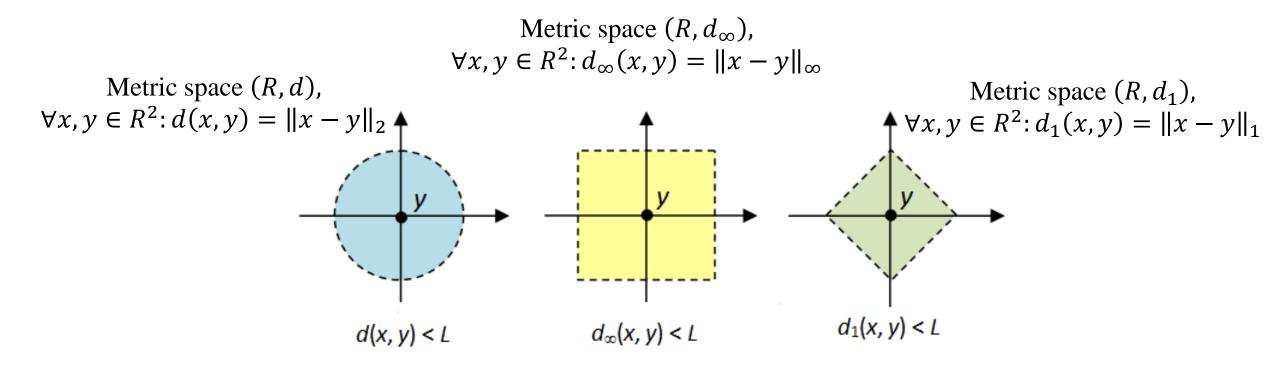
Distance Function (Metric)

• Illustration:



Metric Space

• A metric space is an ordered pair (X, d) where X is a set and $d: X \times X \to [0, \infty)$ is a distance function on the set X.



Definitions

1) Log-Log Lipschitz:

A monotonic non-decreasing function $D: [0, \infty) \rightarrow [0, \infty)$ satisfies the *Log-Log* Lipschitz condition if there is r > 0 such that for every x > 0 and $\Delta > 1$ it holds that:

 $D(\Delta x) \le \Delta^r D(x)$

Lipschitz constant

2) <u>Weak triangle inequality:</u>

Let $D: X \times X \to [0, \infty)$. The function *D* satisfies the weak triangle inequality if there is $\rho > 0$ such that for every $(p, p', c) \in X^3$ the following holds:

 $D(p,c) \le \rho \big(D(p,p') + D(p',c) \big)$

Definitions

3) Property 1:

Let $D: X \times X \to [0, \infty)$. For every $\psi \in \left(0, \frac{1}{2}\right)$ there is a real $\phi \ge 0$ such that for every $(p, p', c) \in X^3$ it holds that $|D(p, c) - D(p', c)| \le \phi D(p, p') + \psi D(p, c)$

Let (X, dist) be a metric space and let $f: [0, \infty) \to [0, \infty)$ be a function that satisfies the *Log-Log* Lipschitz condition.

Define $far: X^2 \rightarrow [0, \infty)$ to be a mapping from every $p, c \in X$ to far(p, c) = f(dist(p, c))

• <u>Claim 1:</u>

The function *far* satisfies the weak triangle inequality for $\rho = \max\{2^{r-1}, 1\}$, i.e, for every $p, q, c \in X^3$:

 $far(p,q) \le \rho(far(p,c) + far(c,q))$

Proof of Claim 1:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

Proof of Claim 1:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

$$f(z) \le f(x+y) = \omega \cdot f(x+y) + (1-\omega) \cdot f(x+y)$$

Proof of Claim 1:

Let x = dist(p,c), y = dist(c,q), z = dist(p,q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

$$\begin{aligned} f(z) &\leq f(x+y) = \omega \cdot f(x+y) + (1-\omega) \cdot f(x+y) \\ &\leq \omega \cdot f\left(\frac{x(x+y)}{x}\right) + (1-\omega) \cdot f\left(\frac{y(x+y)}{y}\right) \end{aligned}$$

Proof of Claim 1:

Let x = dist(p,c), y = dist(c,q), z = dist(p,q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

$$f(z) \le f(x+y) = \omega \cdot f(x+y) + (1-\omega) \cdot f(x+y)$$
$$\le \omega \cdot f\left(\frac{x(x+y)}{x}\right) + (1-\omega) \cdot f\left(\frac{y(x+y)}{y}\right)$$
$$Log-Log Lipschitz \qquad \le \omega \cdot f(x) \left(\frac{x+y}{x}\right)^r + (1-\omega)f(y) \left(\frac{x+y}{y}\right)^r$$

Proof of Claim 1:

Let x = dist(p,c), y = dist(c,q), z = dist(p,q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

$$f(z) \le f(x+y) = \omega \cdot f(x+y) + (1-\omega) \cdot f(x+y)$$
$$\le \omega \cdot f\left(\frac{x(x+y)}{x}\right) + (1-\omega) \cdot f\left(\frac{y(x+y)}{y}\right)$$
$$Log-Log Lipschitz \qquad \le \omega \cdot f(x)\left(\frac{x+y}{x}\right)^r + (1-\omega)f(y)\left(\frac{x+y}{y}\right)^r$$
$$= (x+y)^r \left(\frac{\omega \cdot f(x)}{x^r} + \frac{(1-\omega)f(y)}{y^r}\right)$$

Proof of Claim 1:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q). Need to prove for $\rho = \max\{2^{r-1}, 1\}$ it holds that: $far(p,q) = f(z) \le \rho \cdot (f(x) + f(y)) = \rho \cdot (far(p,c) + far(c,q))$

$$f(z) \leq f(x+y) = \omega \cdot f(x+y) + (1-\omega) \cdot f(x+y)$$
$$\leq \omega \cdot f\left(\frac{x(x+y)}{x}\right) + (1-\omega) \cdot f\left(\frac{y(x+y)}{y}\right)$$
$$Log-Log Lipschitz \leq \omega \cdot f(x) \left(\frac{x+y}{x}\right)^r + (1-\omega)f(y) \left(\frac{x+y}{y}\right)^r$$
$$= (x+y)^r \left(\frac{\omega \cdot f(x)}{x^r} + \frac{(1-\omega)f(y)}{y^r}\right)$$
By substituting $\omega = \frac{x^r}{x^r+y^r} \stackrel{\rho}{=} \left(\frac{(x+y)^r}{x^r+y^r}\right) \cdot \left(f(x) + f(y)\right)$

Let (X, dist) be a metric space and let $f: [0, \infty) \to [0, \infty)$ be a function that satisfies the *Log-Log* Lipschitz condition.

Define $far: X^2 \rightarrow [0, \infty)$ to be a mapping from every $p, c \in X$ to far(p, c) = f(dist(p, c))

• <u>Claim 2:</u>

The function *far* satisfies property 1 for every $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \max\left\{\left(\frac{r}{\psi}\right)^r, 1\right\}$

Proof of Claim 2:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q), $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \left(\frac{r}{\psi}\right)'$. Need to prove that:

 $far(p,c) - far(c,q) = f(x) - f(y) \le \phi f(z) + \psi f(x) = \phi far(p,q) + \psi far(p,c)$ Assume $f(x) > \phi f(z)$, otherwise Claim 2 holds trivially.

Proof of Claim 2:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q), $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \left(\frac{r}{\psi}\right)'$. Need to prove that:

 $far(p,c) - far(c,q) = f(x) - f(y) \le \phi f(z) + \psi f(x) = \phi far(p,q) + \psi far(p,c)$ Assume $f(x) > \phi f(z)$, otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that $f(x) = f\left(y \cdot \frac{x}{y}\right) \le \left(\frac{x}{y}\right)^r \cdot f(y)$

Proof of Claim 2:

Let x = dist(p, c), y = dist(c, q), z = dist(p, q), $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \left(\frac{r}{\psi}\right)'$. Need to prove that:

 $far(p,c) - far(c,q) = f(x) - f(y) \le \phi f(z) + \psi f(x) = \phi far(p,q) + \psi far(p,c)$ Assume $f(x) > \phi f(z)$, otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that $f(x) = f\left(y \cdot \frac{x}{y}\right) \le \left(\frac{x}{y}\right)^r \cdot f(y)$ $\rightarrow f(y) \ge f(x) \cdot \left(\frac{y}{x}\right)^r$

Proof of Claim 2:

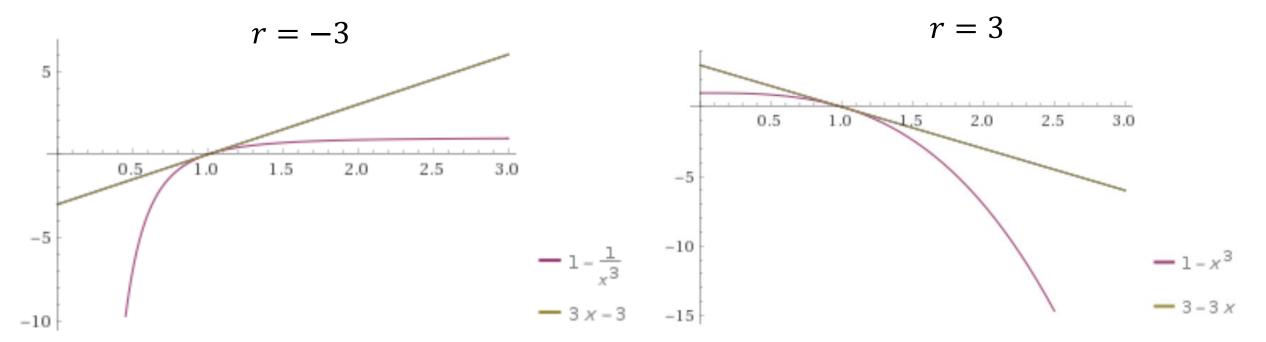
Let x = dist(p, c), y = dist(c, q), z = dist(p, q), $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \left(\frac{r}{\psi}\right)'$. Need to prove that:

 $far(p,c) - far(c,q) = f(x) - f(y) \le \phi f(z) + \psi f(x) = \phi far(p,q) + \psi far(p,c)$ Assume $f(x) > \phi f(z)$, otherwise Claim 2 holds trivially.

By the Log-Log Lipschitz it holds that $f(x) = f\left(y \cdot \frac{x}{y}\right)^r \le \left(\frac{x}{y}\right)^r \cdot f(y)$ $\rightarrow f(y) \ge f(x) \cdot \left(\frac{y}{x}\right)^r$ Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.

Proof of Claim 2:

Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.



Proof of Claim 2:

Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.

$$\rightarrow f(x) - f(y) \leq f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right) \leq f(x) \cdot r\left(1 - \frac{y}{x}\right)$$

Proof of Claim 2:

Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.

$$\rightarrow f(x) - f(x) \leq f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right) \leq f(x) \cdot r\left(1 - \frac{y}{x}\right)$$
$$= f(x) \cdot r\left(\frac{x - y}{x}\right)$$

Proof of Claim 2:

Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.

$$\rightarrow f(x) - f(x) \leq f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right) \leq f(x) \cdot r\left(1 - \frac{y}{x}\right)$$

$$= f(x) \cdot r\left(\frac{x - y}{x}\right) \leq f(x) \cdot r\left(\frac{z}{x}\right)$$

$$Triangle$$

$$inequality$$

Proof of Claim 2:

Hence, $f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$.

For every $\omega \ge 0$ it holds that $1 - \omega^r \le r(1 - \omega)$.

Assumption: $\phi f(z) < f(x)$ $\rightarrow f\left(\frac{z}{\frac{1}{\sigma^{\frac{1}{r}}}}\right) \le \phi f(z) < f(x)$ $\rightarrow \frac{z}{t^{\frac{1}{2}}} \leq z < x$ since f is nondecreasing $\rightarrow \frac{z}{x} < \phi^{\frac{1}{r}}$

Proof of Claim 2:

Hence,
$$f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$$
.

$$\underbrace{Assumption:}_{\phi f(z) < f(x)} \rightarrow f\left(\frac{z}{\frac{1}{\phi^{\frac{1}{r}}}}\right) \le \phi f(z) < f(x)$$

$$\rightarrow \frac{z}{\frac{1}{\phi^{\frac{1}{r}}}} \le z < x \text{ since } f \text{ is non-}$$
decreasing
$$\rightarrow \frac{z}{x} < \phi^{\frac{1}{r}}$$

$$\leq f(x) \cdot r\left(1 - \frac{y}{x}\right)$$

$$\rightarrow f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right) \le f(x) \cdot r\left(1 - \frac{y}{x}\right)$$
$$= f(x) \cdot r\left(\frac{x - y}{x}\right) \le f(x) \cdot r\left(\frac{z}{x}\right)$$
$$\bigstar f(x) \cdot r\phi^{\frac{1}{r}} \le \psi f(x)$$
$$\text{Since } \phi = \left(\frac{r}{\psi}\right)^r$$

Proof of Claim 2:

Hence,
$$f(x) - f(y) \le f(x) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right)$$
.

$$\frac{\text{Assumption:}}{\phi f(z) < f(x)} \rightarrow f\left(\frac{z}{\phi^{\frac{1}{r}}}\right) \leq \phi f(z) < f(x)$$
$$\rightarrow \frac{z}{\phi^{\frac{1}{r}}} \leq z < x \text{ since } f \text{ is non-}$$
decreasing
$$\rightarrow \frac{z}{x} < \phi^{\frac{1}{r}}$$
$$r = f(x) \cdot r\left(1 - \frac{y}{x}\right)$$

$$\rightarrow \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y}) \leq f(\mathbf{x}) \cdot \left(1 - \left(\frac{y}{x}\right)^r\right) \leq f(\mathbf{x}) \cdot r\left(1 - \frac{y}{x}\right)$$

$$= f(\mathbf{x}) \cdot r\left(\frac{x - y}{x}\right) \leq f(\mathbf{x}) \cdot r\left(\frac{z}{x}\right)$$

$$\neq f(\mathbf{x}) \cdot r\phi^{\frac{1}{r}} \leq \psi f(\mathbf{x}) \leq \phi \mathbf{f}(\mathbf{z}) + \psi \mathbf{f}(\mathbf{x})$$

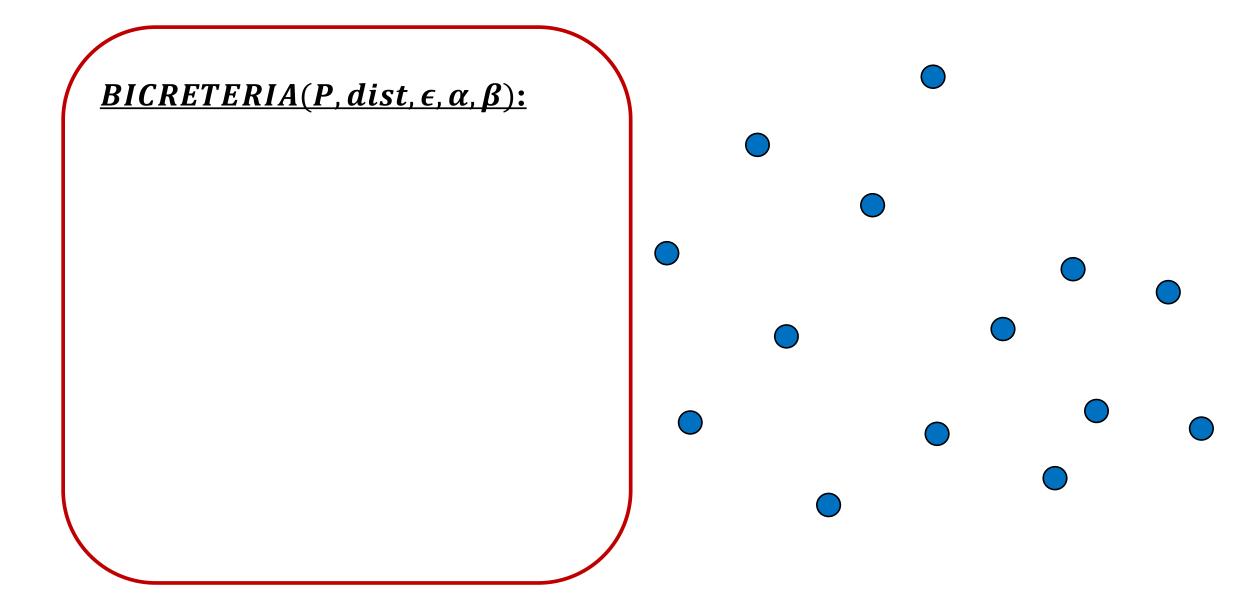
$$\text{Since } \phi = \left(\frac{r}{\psi}\right)^r$$

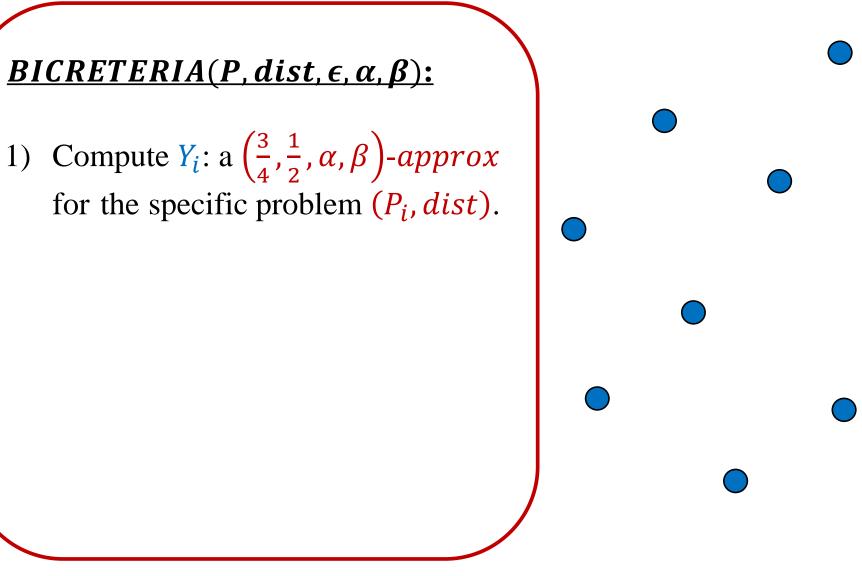
Let (X, dist) be a metric space and let $f: [0, \infty) \to [0, \infty)$ be a function that satisfies the *Log-Log* Lipschitz condition.

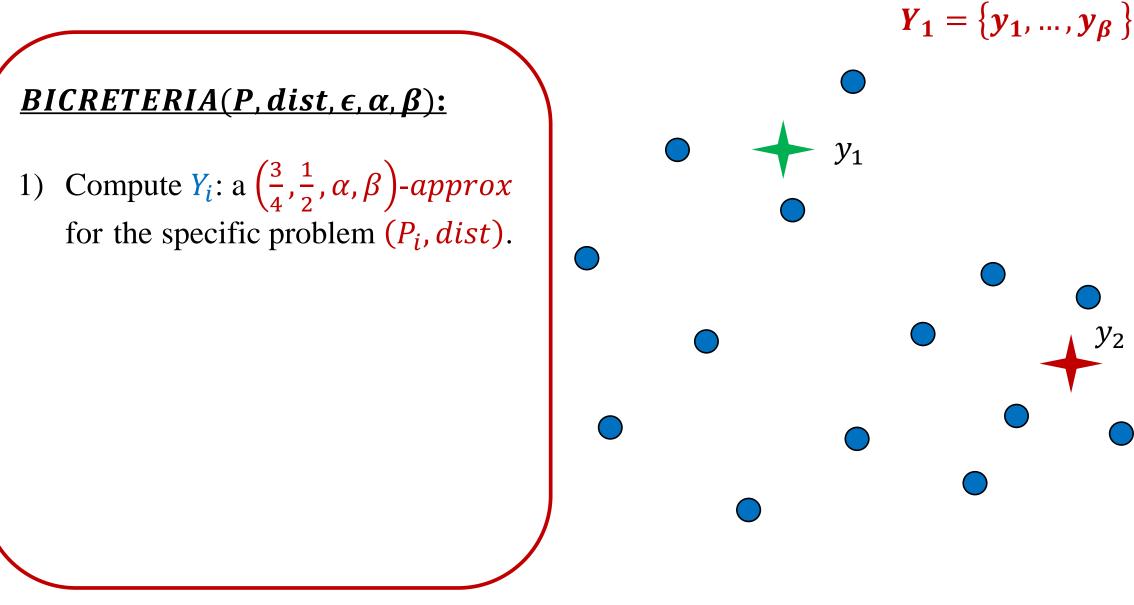
Define $far: X^2 \rightarrow [0, \infty)$ to be a mapping from every $p, c \in X$ to far(p, c) = f(dist(p, c))

• <u>Claim 3:</u> (Tighter bound than in Claim 2)

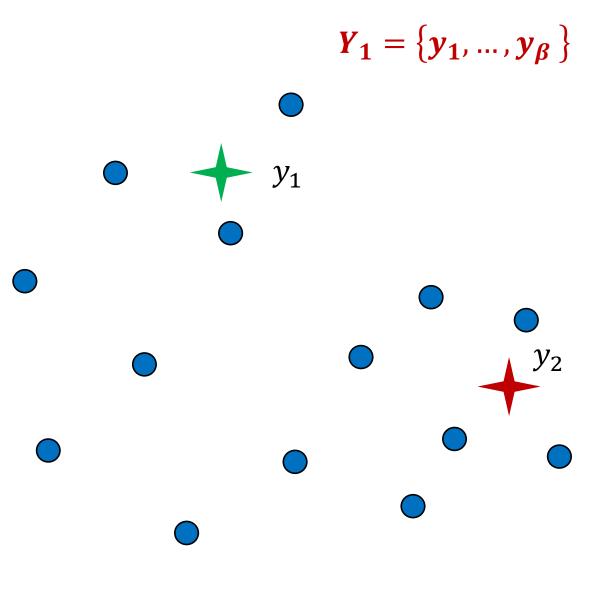
The function *far* satisfies property 1 for every $\psi \in \left(0, \frac{1}{2}\right)$ and $\phi = \max\left\{\left(\frac{r-1}{\psi}\right)^{r-1}, 1\right\}$ if r > 1.



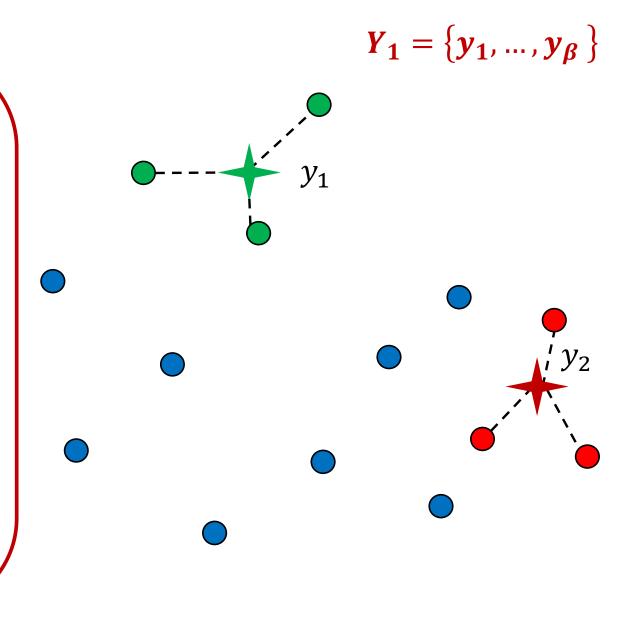




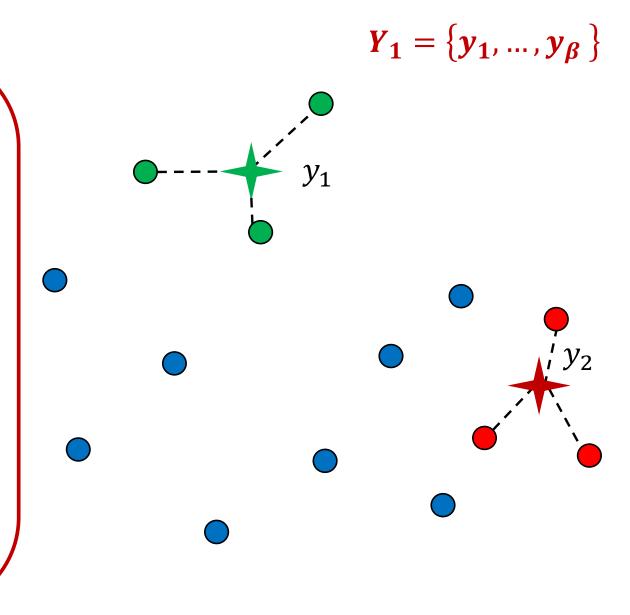
- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.



- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.

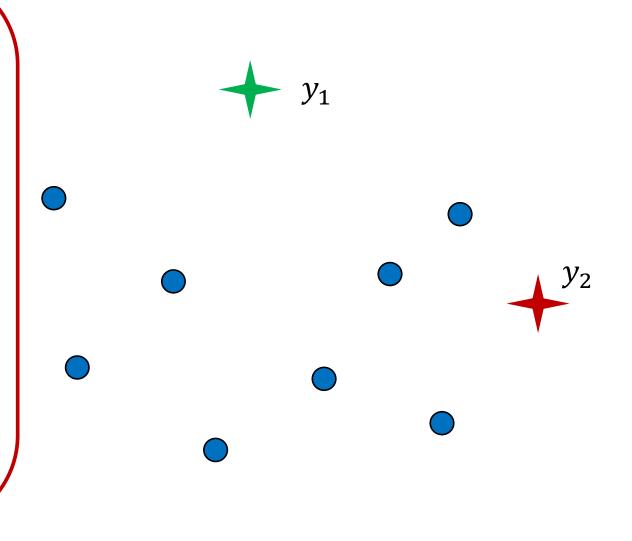


- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.

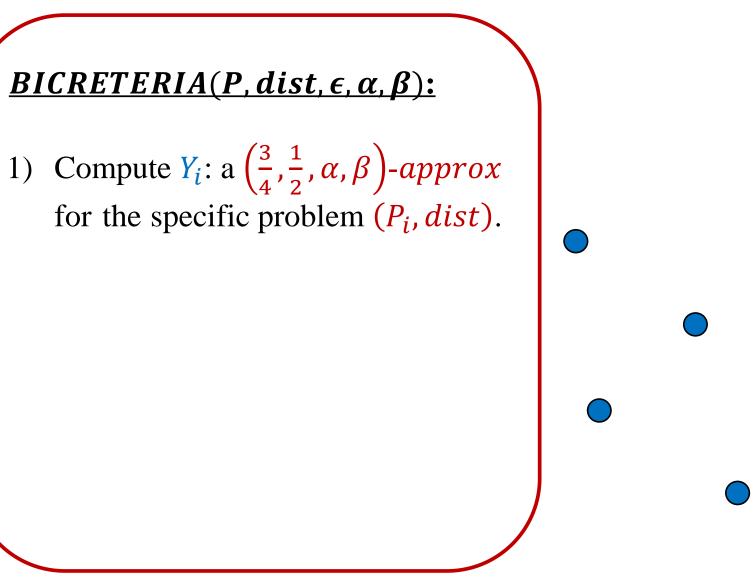


$$\boldsymbol{Y}_1 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$

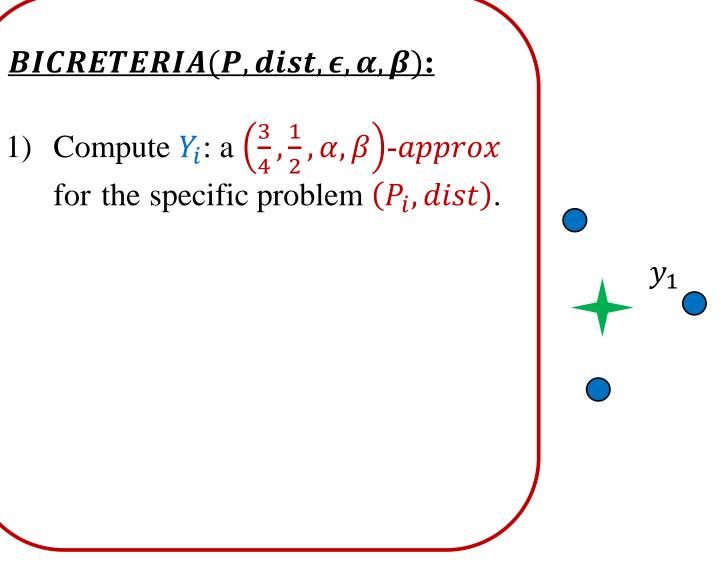
- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.



- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.



$$\boldsymbol{Y}_2 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$



$$\boldsymbol{Y}_2 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$

 y_1

- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.

$$\boldsymbol{Y}_2 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$

 y_1

- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.

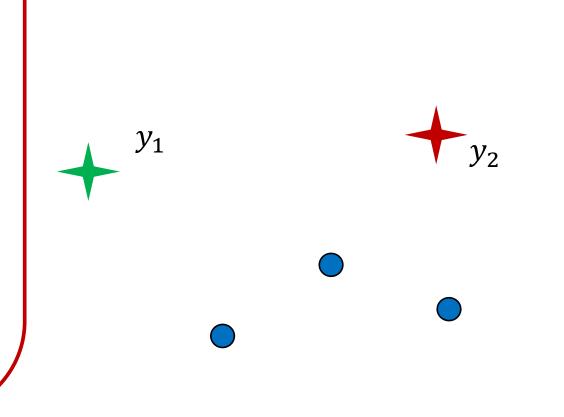
$$\boldsymbol{Y}_2 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$

 y_1

- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.

$$\boldsymbol{Y}_2 = \left\{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{\boldsymbol{\beta}} \right\}$$

- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.



BICRETERIA(P, dist, ϵ , α , β):

- 1) Compute Y_i : a $\left(\frac{3}{4}, \frac{1}{2}, \alpha, \beta\right)$ -approx for the specific problem $(P_i, dist)$.
- 2) Compute G_i : the $\left[\frac{1}{2} \cdot \frac{3|P|}{4}\right]$ points $p \in P_i$ with smallest value $dist(p, Y_i)$.
- 3) Remove G_i from the set of point: $P_{i+1} = P_i \setminus G_i$ and go to (1) if $|P_{i+1}| \ge 20$.

 $Y = Y_1 \cup Y_2 \cup \cdots \cup Y_i$

• Claim:

The algorithm *BICRETERIA*(P, dist, ϵ , α , β) returns an $(O(\alpha), O(\beta \log n))$ -approximation.

• Claim:

The algorithm *BICRETERIA*(P, dist, ϵ , α , β) returns an $(O(\alpha), O(\beta \log n))$ -approximation.

Need to prove $\log n$ recursive iterations, each returns an (α, β) -approximation

• Claim:

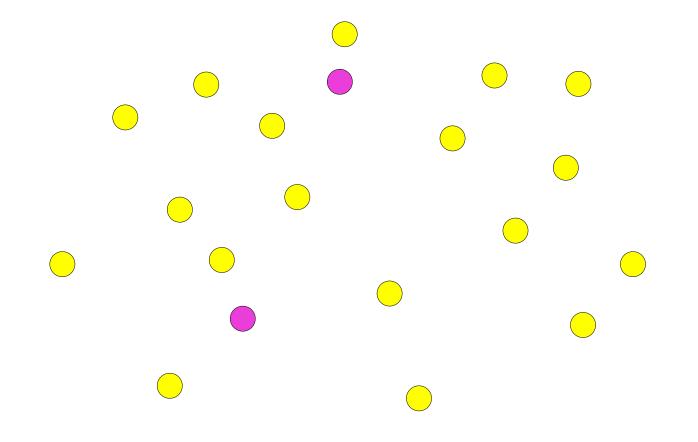
The algorithm *BICRETERIA*(P, dist, ϵ , α , β) returns an $(O(\alpha), O(\beta \log n))$ -approximation.

Need to prove $\log n$ recursive iterations, each returns an (α, β) -approximation

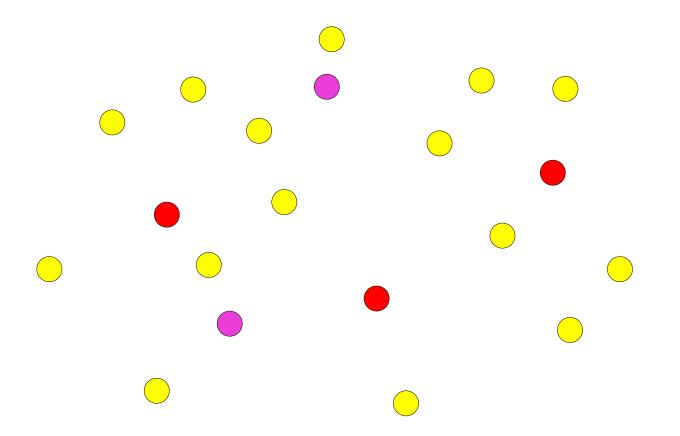
• Proof:

Let Y^* be any set of k points in \mathbb{R}^d

Let Y^* be any set of k points in \mathbb{R}^d

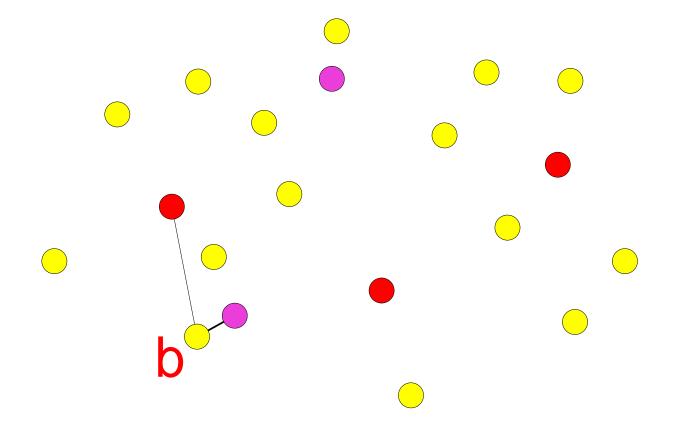


Let Y^* be any set of k points in \mathbb{R}^d



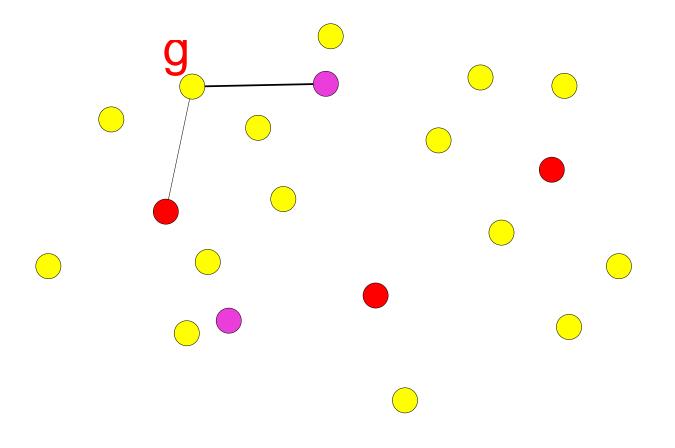
Consider Y_i that is constructed during the i^{th} iteration

A point $b \in P$ is bad for Y_i , if:



 $dist(b, Y_i) > 2 \cdot dist(b, Y^*)$

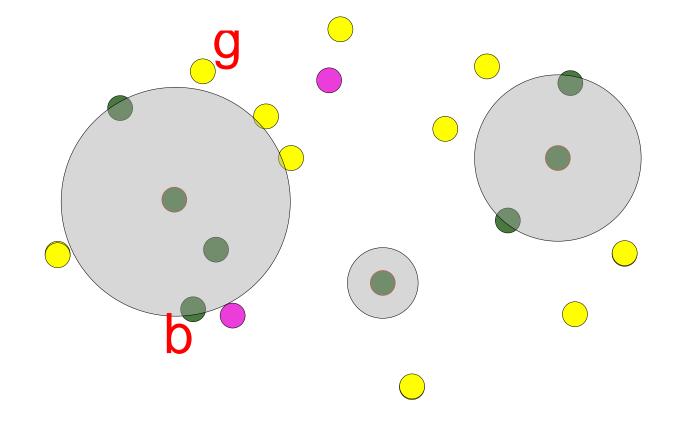
A point $g \in P$ is good for Y_i otherwise:



 $dist(g, Y_i) \leq 2 \cdot dist(b, Y^*)$

Main Technical Theorem

We can map every bad point $b \in P_i$ to a distinct good point $g \in P_{i+1}$



 $\begin{aligned} dist(b, Y) &\leq dist(b, Y_i), \text{ because } Y_i \subseteq Y. \\ \text{Since } b \in P_i \text{ and } g \in P_{i+1}: \\ dist(b, Y_i) &\leq dist(g, Y_i) \end{aligned}$

Since g is good for Y_i : $dist(g, Y_i) \le 2 \cdot dist(g, Y^*)$ $dist(b, Y) \leq dist(b, Y_i), \text{ because } Y_i \subseteq Y.$ Since $b \in P_i$ and $g \in P_{i+1}$: $dist(b, Y_i) \leq dist(g, Y_i)$

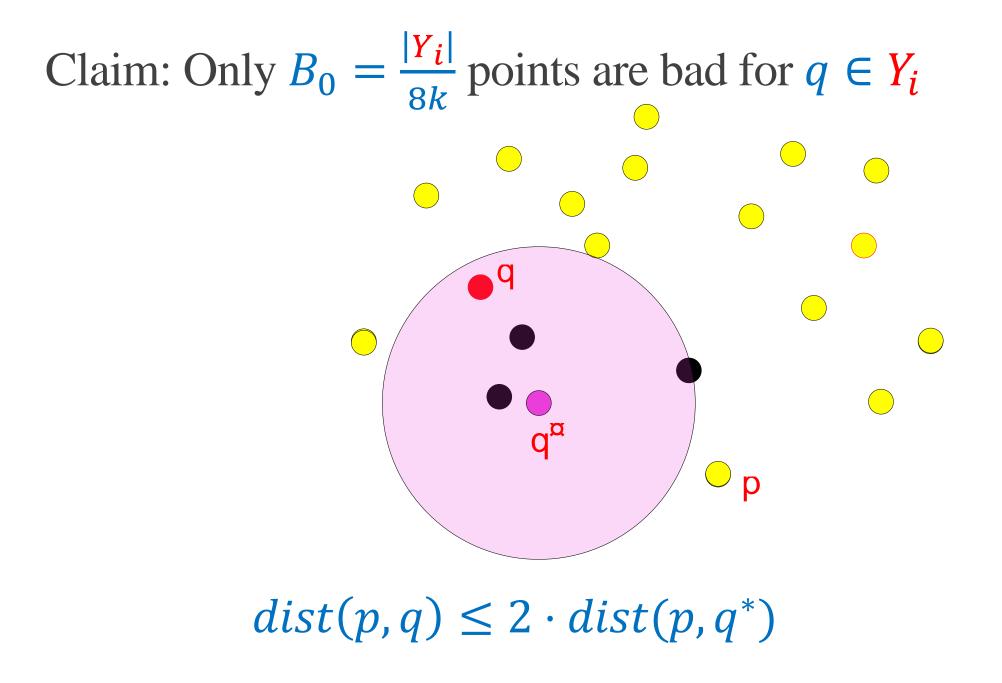
Since g is good for Y_i : $dist(g, Y_i) \le 2 \cdot dist(g, Y^*)$ $dist(b, Y) \le 2 \cdot dist(g, Y^*)$

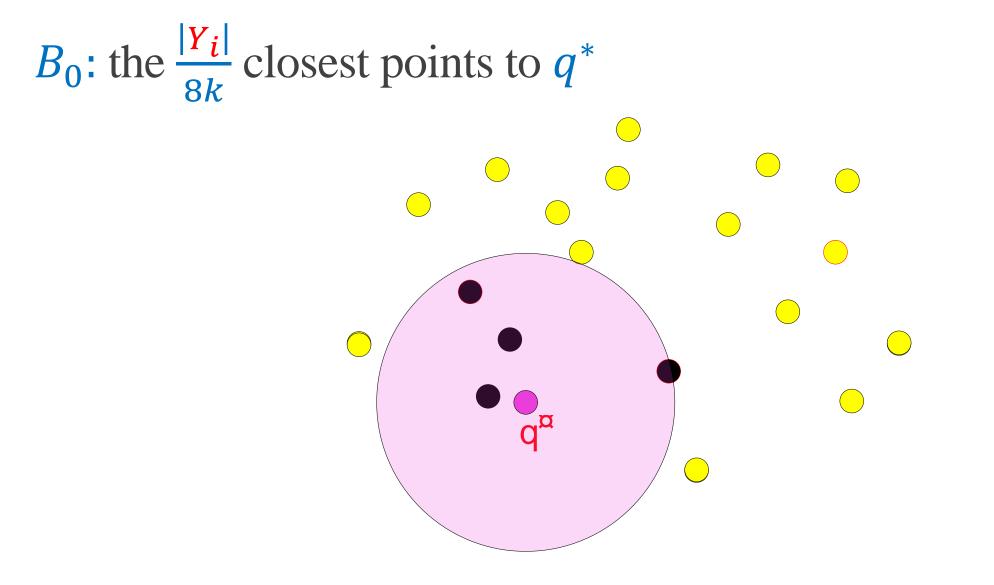
$$\sum_{p \in P} dist(p, \mathbf{Y}) = \sum_{g} dist(g, \mathbf{Y}) + \sum_{b} dist(b, \mathbf{Y})$$
$$\leq \sum_{g} 2 \cdot dist(g, \mathbf{Y}^{*}) + \sum_{g} 2 \cdot dist(g, \mathbf{Y}^{*})$$
$$\leq \sum_{g} 4 \cdot dist(g, \mathbf{Y}^{*})$$

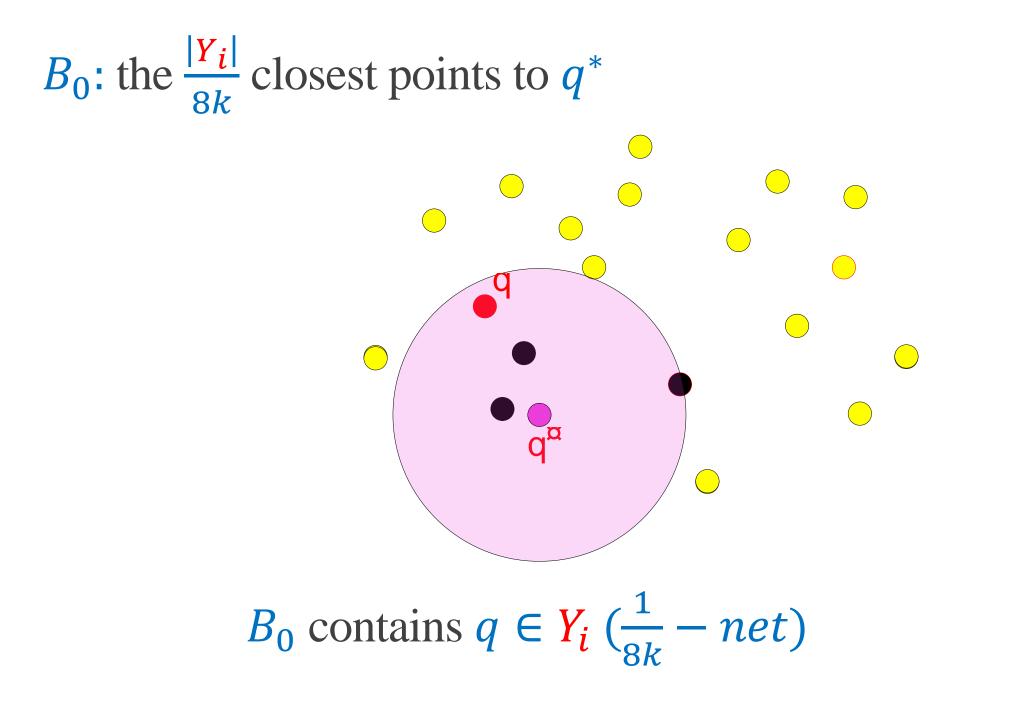
Proof of the Technical Theorem

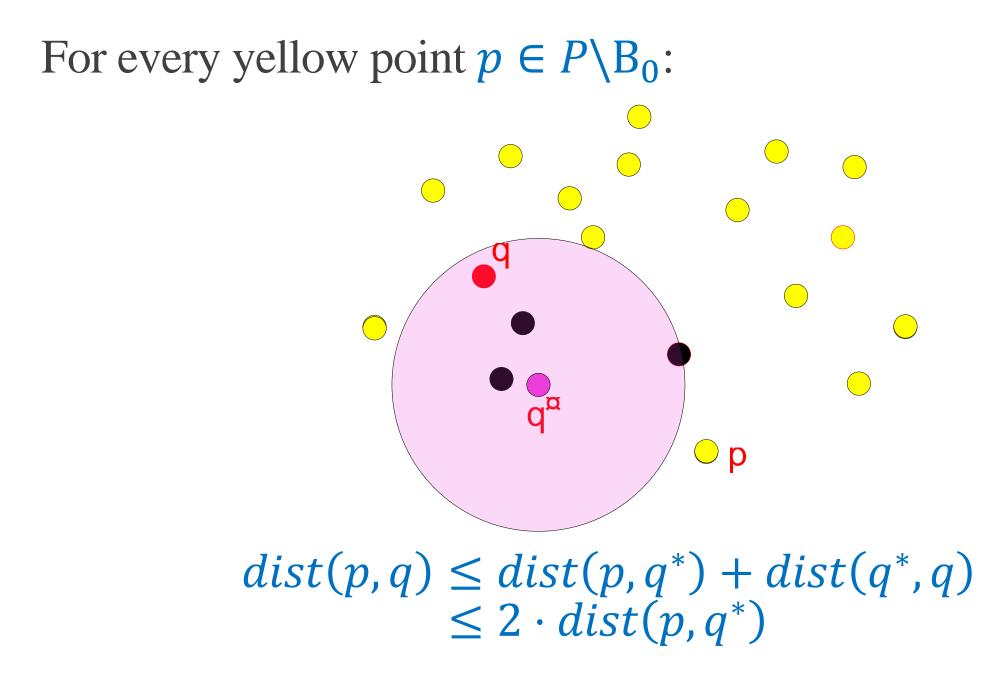
• The number of bad points is at most:

 $|B| = \frac{|Y_i|}{Q}$ • $|Y_{i+1}| = \frac{|Y_i|}{2}$ The number of good points in Y_{i+1} is at most: $|Y_{i+1}| - |B| \ge \frac{|Y_i|}{2} - \frac{|Y_i|}{8} \ge |B|$









All the yellow points are good for Y_i D Ор

 $dist(p,q) \leq 2 \cdot dist(p,q^*)$

