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Probability



Hoeftding’s bound

(Simplified version — from Young’95 paper)

For n independent random variables X, ..., X,, where X; € |[0,1] , with E(X;) < y;
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‘Leta = e* — 1.
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Hoeffding’s bound - Proof

(Simplified version — from Young’95 paper)

‘Leta = e* — 1.

/Follows from: )
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Union Bound (Boole’s mmequality)
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- P(AUB) = P(4) + P(B) — P(ANB)

— For any events A4, A4,, ..., 4,
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Union Bound (Boole’s mmequality)

- P(AUB) = P(4) + P(B) — P(ANB)

— Forany events A4, 4,, .. A, -
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Hoeffding’s bound — e-sample

Pick a random sample S of F, it holds that:
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Hoeffding’s bound — e-sample

The probability for failure should be small:
1
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Hoeffding’s bound — e-sample

The probability for failure should be small:
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Might be infinite!




Handling m — oo

Example:

Q = circles in R% - range(F,q,7) = {f € F | f inside the circle with center g
and radius r}

— number of different circles: |Q] = m = .

However, the number of different equivalence classes is n%4 since: A sphere in
R% is determined by d + 1 points.
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Handling m — oo

Example:

Q = circles in R% - range(F,q,7) = {f € F | f inside the circle with center g
and radius r}

— number of different circles: |Q] = m = .

However, the number of different equivalence classes is n%4 since: A sphere in
R% is determined by d + 1 points.

NI Eiz(lognd n log%) — Eiz(d logn + log%)



IV C-dimension

Definition: (Range Space)

A range space is a pair (F,ranges) where F is a set, called ground set and ranges
Is a family (set) of subsets of F.

Definition: (VC-dimension)

The VC-dimension of a range space (F,ranges) is the size |G| of the largest subset
G € F such that

{G Nnrange | range € ranges }| < 216Gl



IV C-dimension

Theorem:

Let f1, ..., f, De real polynomials in d < m variables, each of constant degree.
Then the number of sign sequences (Sign(fl(x)), - sign(fm(x))) ,x € R,

that consist of 1 and —1 1s at most O (E) .
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Proof: for which values of m it holds that (7) < 2m9
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IV C-dimension

Theorem:

Let f1, ..., f, De real polynomials in d < m variables, each of constant degree.
Then the number of sign sequences (Sign(fl(x)), - sign(fm(x))) ,x € R,

em
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IV C-dimension

LetQ ={qy,...,q} S R%*and R = {ry, ...,7} S R.

Then:
range(P,Q,R) ={p € P | V,(dist*(p,q;) < 1) }

Consider the following polynomials:
2
Poly(P,Q,R) = { [lp: — ¢;|" =7 | i € [n].j € [K1 }

— |Poly(P, Q,R)| = nk such polynomials in dk variables.



IV C-dimension

Let Q;,Q, € R* and R{,R, S R.
Lemma:

If Poly(P,Q4,R;) and Poly(P, Q,, R,) have the same sign sequence for the nk
polynomials, then

range(P,Q1,R;) = range(P, Q,, R;)
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IV C-dimension

Let Q;,Q, € R* and R{,R, € R.
Lemma:

If Poly(P,Q4,R;) and Poly(P, Q,, R,) have the same sign sequence for the nk
polynomials, then

range(P,Q1,R;) = range(P, Q2 R;)

Proof:
Let p € range(P, Q,R,) ¢1 RT QTZ RTZ
> exists j € ksuchthat ||[p— gl =72 <0 - |lp— g2l =73 <0

- p €range(P, Q2 R;) -



IV C-dimension

Conclusion:

#different ranges < #different sign sequences < 2™

l l

Last Lemma Ifm > 0(d)



