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Probability



Hoeffding’s bound
(Simplified version – from Young’95 paper)

•For 𝑛 independent random variables 𝑋1, … , 𝑋𝑛 where 𝑋𝑖 ∈ 0,1 , with 𝐸 𝑋𝑖 ≤ 𝜇𝑖

• Let 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

𝑛
and 𝜇 = σ𝑖=1

𝑛 𝜇𝑖 .

• Then: Pr 𝑋 ≥ 𝜇 + 𝑛𝜖 <
1

𝑒2𝑛𝜖
2



Hoeffding’s bound - Proof
(Simplified version – from Young’95 paper)

•Let 𝛼 = 𝑒4𝜖 − 1.
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= Pr ς𝑖=1
𝑛 1+𝛼 𝑋𝑖

1+𝛼 𝜇𝑖+𝜖
≥ 1

≤ E ς𝑖=1
𝑛 1+𝛼𝑋𝑖

1+𝛼 𝜇𝑖+𝜖

Follows from:

1. For  0 ≤ z ≤ 1, 1 + 𝛼 𝑧 ≤ 1 + 𝛼𝑧

2. Markov’s inequality : Pr 𝑋 ≥ 𝑎 ≤
𝐸 𝑋

𝑎
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2

For 𝜖 > 0, 𝛼 = 𝑒4𝜖 − 1 , 𝑧 ≥ 0 ∶

1 + 𝛼𝑧 <
1 + 𝛼 𝑧+𝜖

𝑒2𝜖
2
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Hoeffding’s bound → 𝜖-sample

Pick a random sample 𝑆 of 𝐹, it holds that:

𝑃𝑟1 = 𝑃𝑟
𝐹 ∩ 𝑟𝑎𝑛𝑔𝑒1

𝐹
−

𝑆 ∩ 𝑟𝑎𝑛𝑔𝑒1
𝑆

> 𝜖

Probability of 

failure for 𝑟𝑎𝑛𝑔𝑒1 𝑆 is an 𝜖-sample
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Prbad = 𝑃𝑟1 ∪ 𝑃𝑟2 ∪⋯∪ 𝑃𝑟𝑚 ≤ 𝑚 ⋅
1

𝑒2 𝑆 𝜖2

Hoeffding

Union Bound

Probability of 

failure for 𝑟𝑎𝑛𝑔𝑒1



Hoeffding’s bound → 𝜖-sample

The probability for failure should be small:

Prbad ≤ 𝑚 ⋅
1

𝑒2 𝑆 𝜖2
≤ 𝛿

→
𝑚

𝛿
≤ 𝑒2 𝑆 𝜖2

→ 𝑆 ≥
1

𝜖2
log𝑚 + log
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The probability for failure should be small:

Prbad ≤ 𝑚 ⋅
1

𝑒2 𝑆 𝜖2
≤ 𝛿

→
𝑚

𝛿
≤ 𝑒2 𝑆 𝜖2

→ 𝑆 ≥
1

𝜖2
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1

𝛿

Might be infinite!



Handling 𝑚 → ∞

Example: 

𝑄 = circles in 𝑅𝑑 → 𝑟𝑎𝑛𝑔𝑒 𝐹, 𝑞, 𝑟 = {𝑓 ∈ 𝐹 ∣ f inside the circle with center 𝑞
and radius 𝑟}

→ number of different circles: Q = 𝑚 = ∞.

However, the number of different equivalence classes is 𝑛𝑂 𝑑 since: A sphere in 
𝑅𝑑 is determined by 𝑑 + 1 points.
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𝑉𝐶-dimension

Definition: (Range Space)

A range space is a pair 𝐹, 𝑟𝑎𝑛𝑔𝑒𝑠 where 𝐹 is a set, called ground set and 𝑟𝑎𝑛𝑔𝑒𝑠
is a family (set) of subsets of 𝐹.

Definition: (𝑉𝐶-dimension)

The 𝑉𝐶-dimension of a range space 𝐹, 𝑟𝑎𝑛𝑔𝑒𝑠 is the size 𝐺 of the largest subset 
𝐺 ⊆ 𝐹 such that

𝐺 ∩ 𝑟𝑎𝑛𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∈ 𝑟𝑎𝑛𝑔𝑒𝑠 ≤ 2 𝐺



𝑉𝐶-dimension

Theorem:

Let 𝑓1, … , 𝑓𝑚 be real polynomials in 𝑑 ≤ 𝑚 variables, each of constant degree. 

Then the number of sign sequences 𝑠𝑖𝑔𝑛 𝑓1 𝑥 ,… , 𝑠𝑖𝑔𝑛 𝑓𝑚 𝑥 , 𝑥 ∈ 𝑅𝑑, 

that consist of 1 and −1 is at most 𝑂
𝑚

𝑑

𝑑
.
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Corollary:

If 𝑚 ≥ 𝑂 𝑑 , then the number of distinct sequences as in the above theorem is 
less than 2𝑚.
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Proof: for which values of 𝑚 it holds that 
𝑒𝑚

𝑑

𝑑
≤ 2𝑚 ?
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𝑉𝐶-dimension

Theorem:
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≤ 2𝑚 →
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𝑑
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𝑚

𝑑 →
𝑚

𝑑
≥ 4 → 𝑚 = 𝑂 𝑑



𝑉𝐶-dimension

Let 𝑄 = 𝑞1, … , 𝑞𝑘 ⊆ 𝑅𝑑 and 𝑅 = 𝑟1, … , 𝑟𝑘 ⊆ 𝑅.

Then:
𝑟𝑎𝑛𝑔𝑒 𝑃,𝑄, 𝑅 = 𝑝 ∈ 𝑃 𝑖ڀ 𝑑𝑖𝑠𝑡

2 𝑝, 𝑞𝑖 ≤ 𝑟𝑖
2

Consider the following polynomials:

𝑃𝑜𝑙𝑦 𝑃, 𝑄, 𝑅 = 𝑝𝑖 − 𝑞𝑗
2
− 𝑟𝑗

2 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑘

→ 𝑃𝑜𝑙𝑦 𝑃, 𝑄, 𝑅 = 𝑛𝑘 such polynomials in 𝑑𝑘 variables.



𝑉𝐶-dimension

Let 𝑄1, 𝑄2 ⊆ 𝑅𝑑 and 𝑅1, 𝑅2 ⊆ 𝑅.

Lemma:

If 𝑃𝑜𝑙𝑦 𝑃, 𝑄1, 𝑅1 and 𝑃𝑜𝑙𝑦 𝑃, 𝑄2, 𝑅2 have the same sign sequence for the 𝑛𝑘
polynomials, then

𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄1, 𝑅1 = 𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄2, 𝑅2
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If 𝑃𝑜𝑙𝑦 𝑃, 𝑄1, 𝑅1 and 𝑃𝑜𝑙𝑦 𝑃, 𝑄2, 𝑅2 have the same sign sequence for the 𝑛𝑘
polynomials, then

𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄1, 𝑅1 = 𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄2, 𝑅2

Proof:

Let 𝑝 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑃,𝑄1, 𝑅1

→ exists j ∈ 𝑘 such that 𝑝 − 𝑞𝑗1
2
− 𝑟𝑗1

2 ≤ 0

𝑄1 𝑅1
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𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄1, 𝑅1 = 𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄2, 𝑅2

Proof:

Let 𝑝 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑃,𝑄1, 𝑅1

→ exists j ∈ 𝑘 such that 𝑝 − 𝑞𝑗1
2
− 𝑟𝑗1

2 ≤ 0 → 𝑝 − 𝑞𝑗2
2
− 𝑟𝑗2

2 ≤ 0

𝑄1 𝑅1 𝑄2 𝑅2



𝑉𝐶-dimension

Let 𝑄1, 𝑄2 ⊆ 𝑅𝑑 and 𝑅1, 𝑅2 ⊆ 𝑅.

Lemma:

If 𝑃𝑜𝑙𝑦 𝑃, 𝑄1, 𝑅1 and 𝑃𝑜𝑙𝑦 𝑃, 𝑄2, 𝑅2 have the same sign sequence for the 𝑛𝑘
polynomials, then

𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄1, 𝑅1 = 𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄2, 𝑅2

Proof:

Let 𝑝 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑃,𝑄1, 𝑅1

→ exists j ∈ 𝑘 such that 𝑝 − 𝑞𝑗1
2
− 𝑟𝑗1

2 ≤ 0 → 𝑝 − 𝑞𝑗2
2
− 𝑟𝑗2

2 ≤ 0

→ 𝑝 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑃, 𝑄2, 𝑅2

𝑄1 𝑅1 𝑄2 𝑅2



𝑉𝐶-dimension

Conclusion:

#different ranges ≤ #different sign sequences ≤ 2𝑚

Last Lemma If 𝑚 > 𝑂 𝑑


