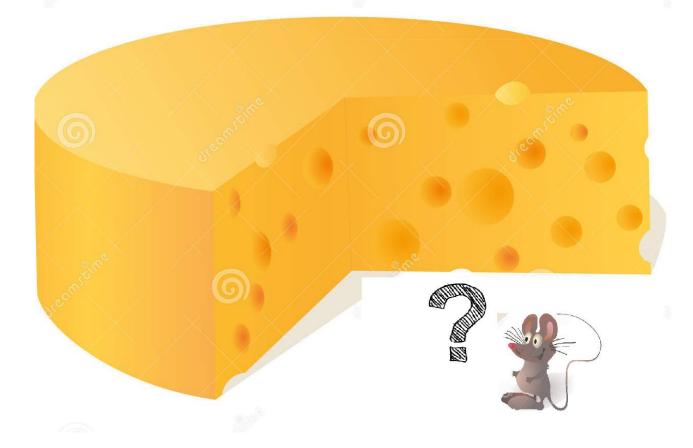
Big Data Class



LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN ALAA MAALOUF

אוניברסיטת חיפה University of Haifa جامعة حيفا

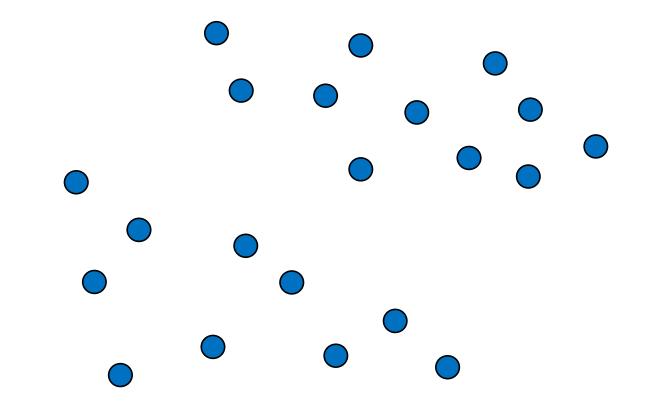
Department of Computer Science, University of Haifa.

k-Lines problem

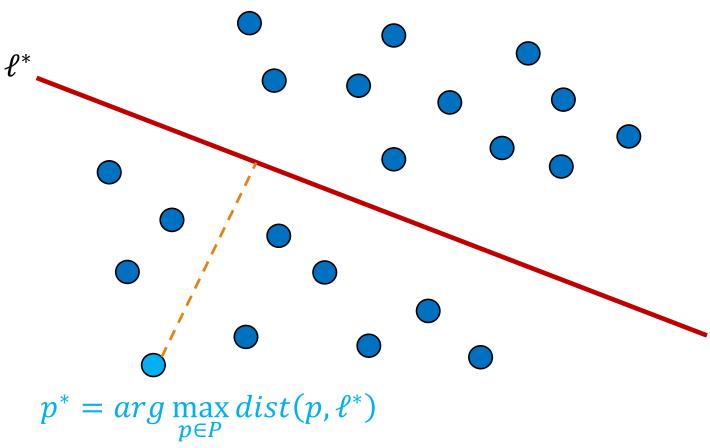
- <u>Input:</u> $P \subseteq R^d$
- <u>Query space</u>: $Q = \{\{\ell_1, \dots, \ell_k\} \mid \ell_i \text{ is a line in } \mathbb{R}^d\}\}$
- <u>Cost function</u>: $\forall L \in Q$: $dist(p,L) = \min_{\ell \in L} dist(p,\ell) = \min_{\ell \in L} \min_{x \in \ell} ||p - x||_2$

• OPT = $\min_{L \in Q} dist(P, L)$

(k=1, d=2)

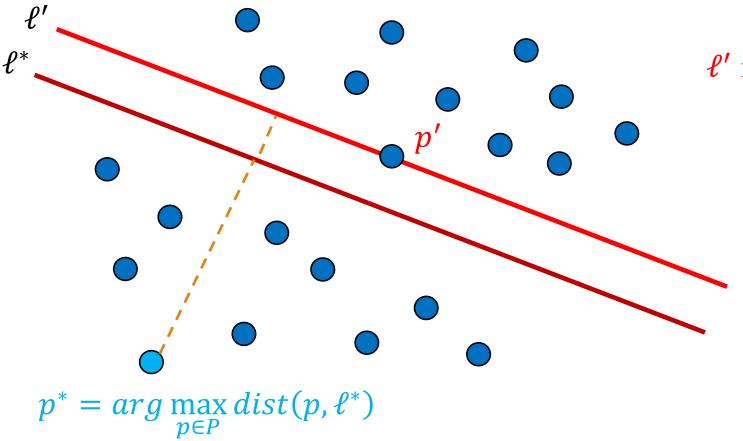


(k=1, d=2) ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$



(k=1, d=2) ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

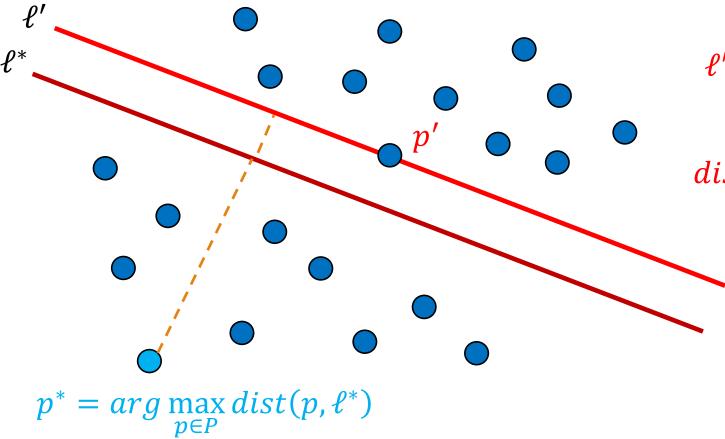
 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

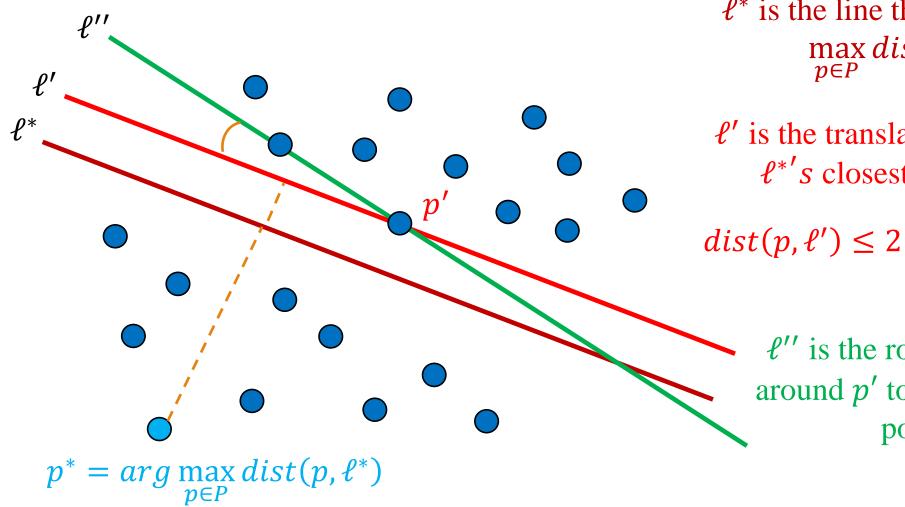


(k=1, d=2) ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$



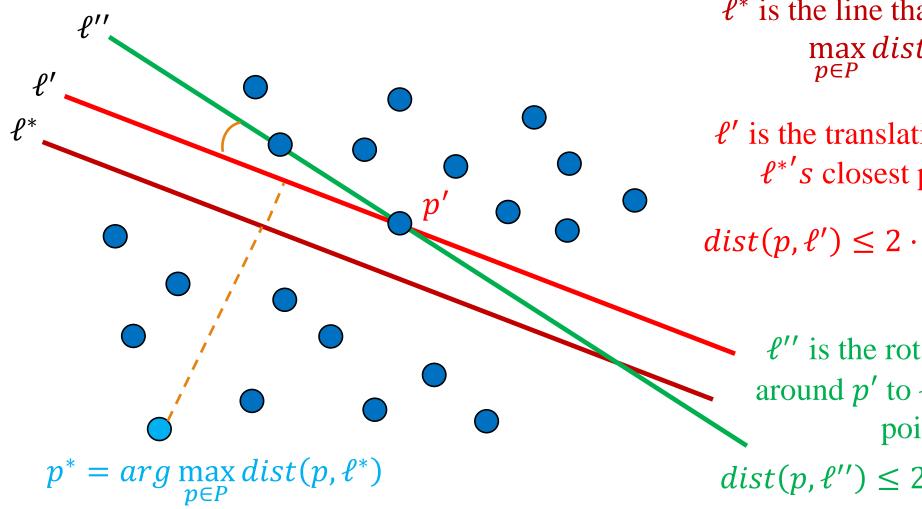


(k=1, d=2) ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to ℓ^* 's closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

 ℓ'' is the rotation of ℓ' around p' to $\ell''s$ closest point



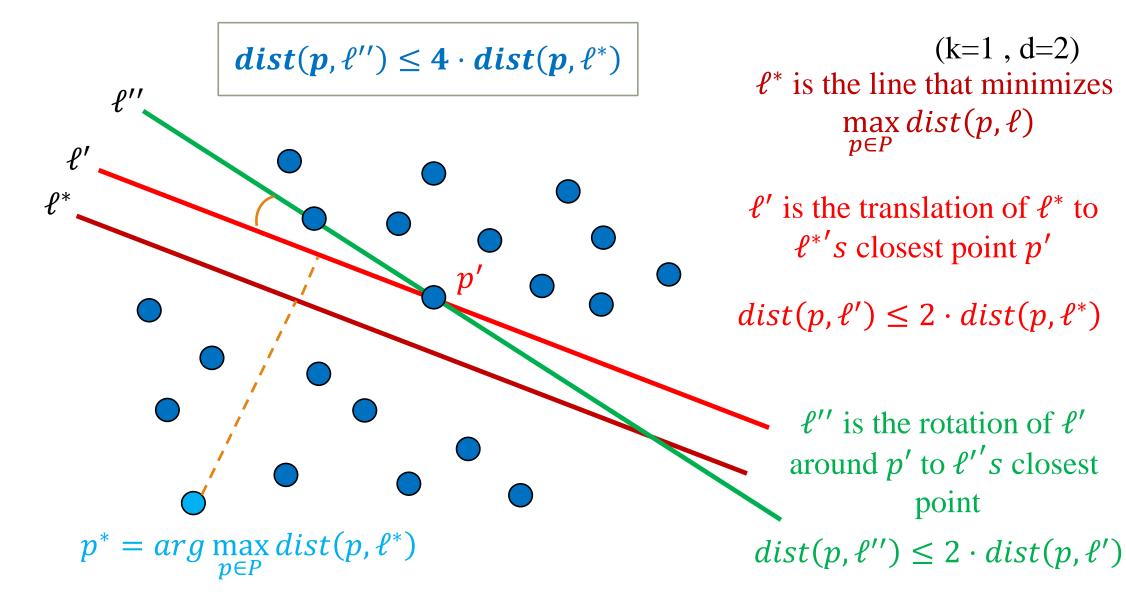
(k=1, d=2) ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

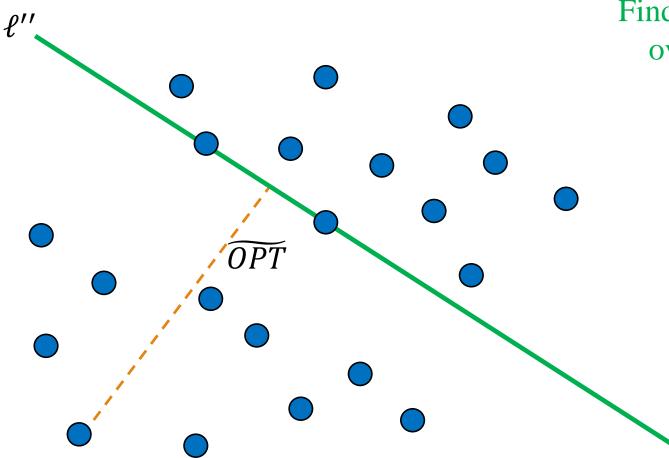
 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

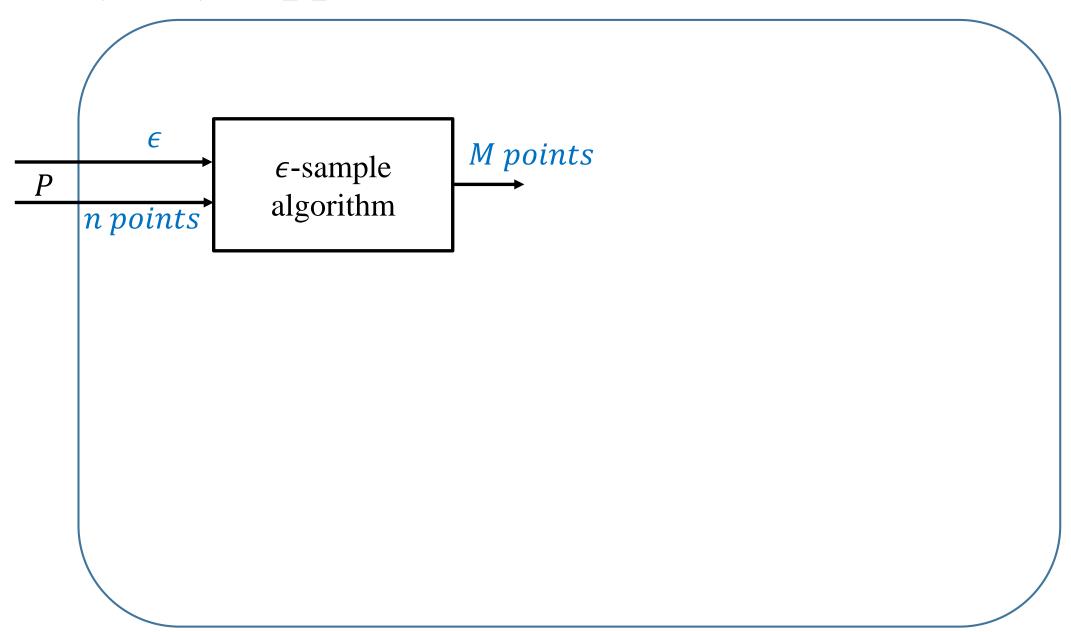
 ℓ'' is the rotation of ℓ' around p' to $\ell''s$ closest point

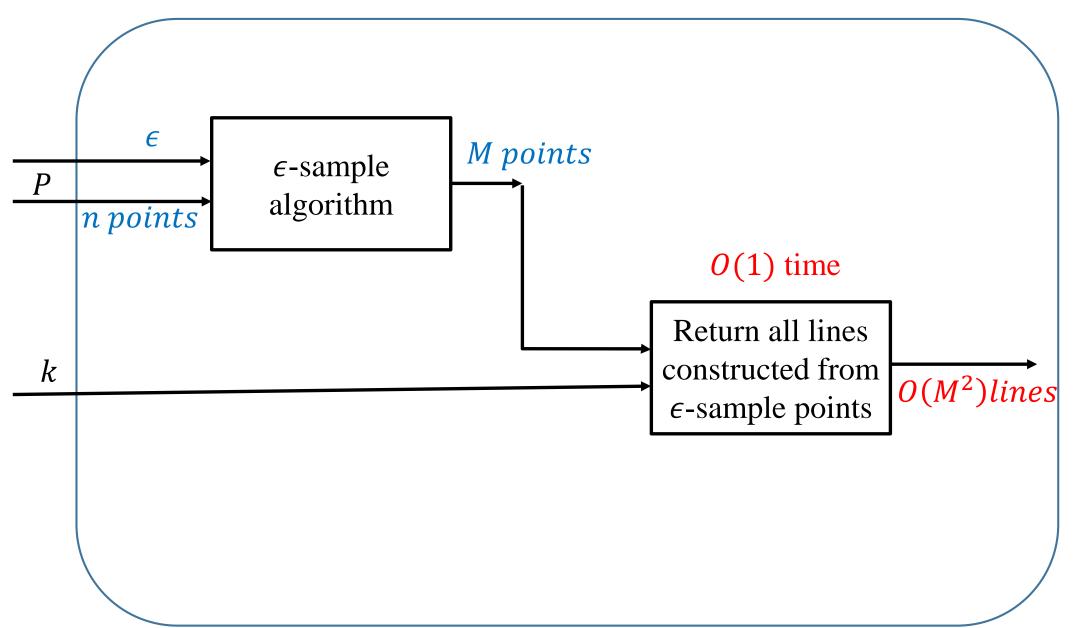
 $dist(p, \ell'') \le 2 \cdot dist(p, \ell')$

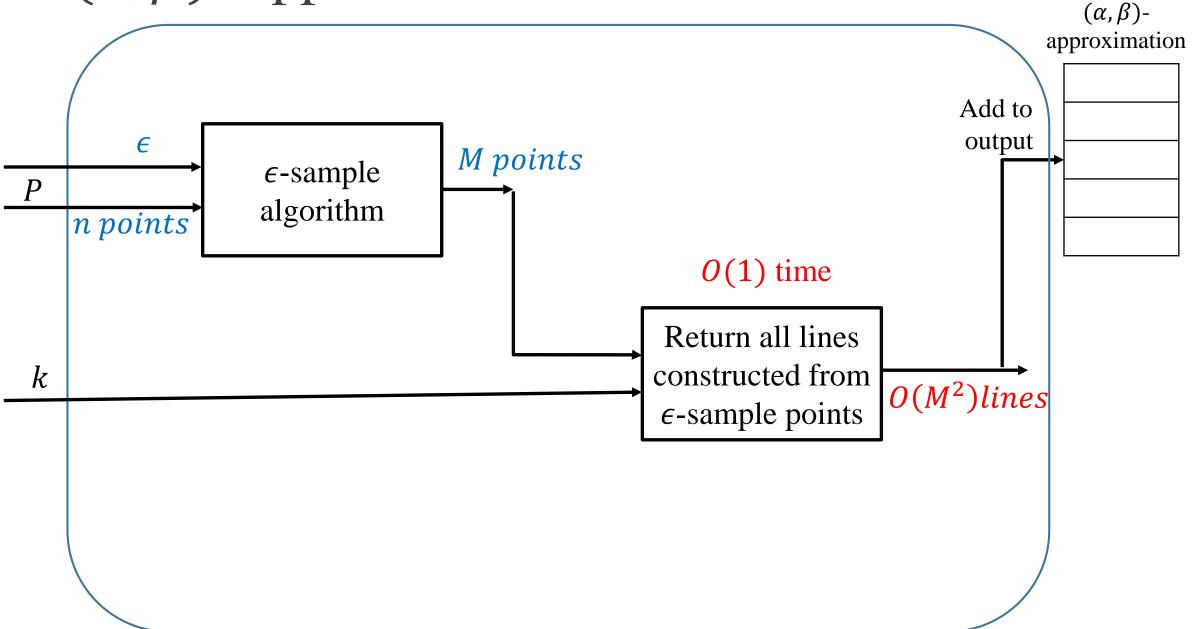


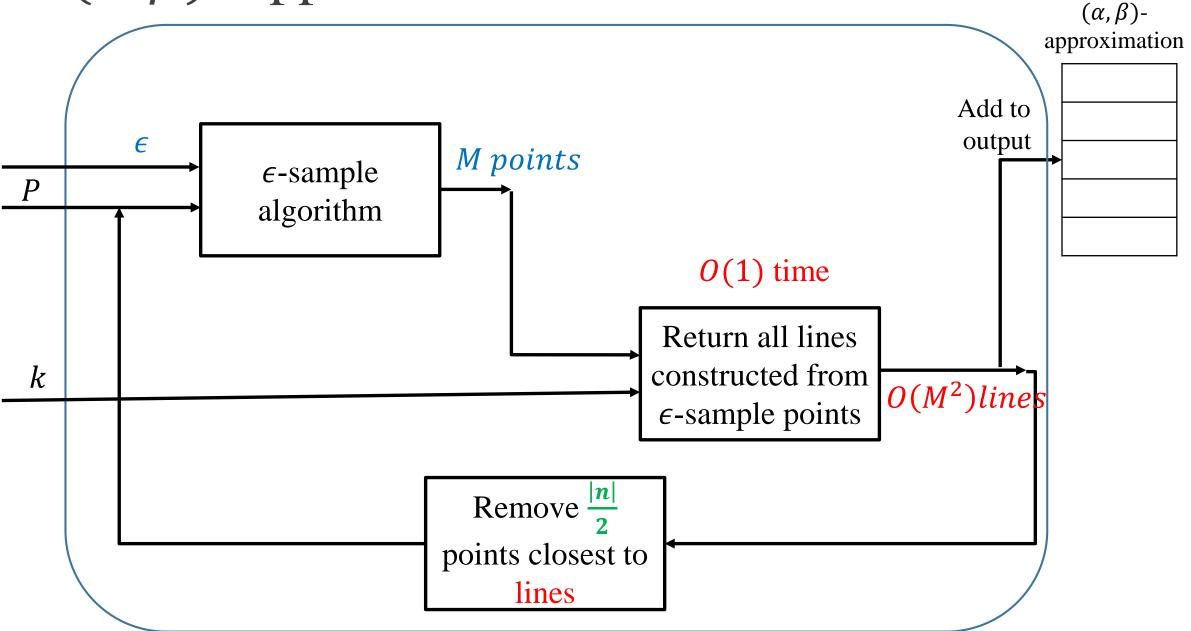


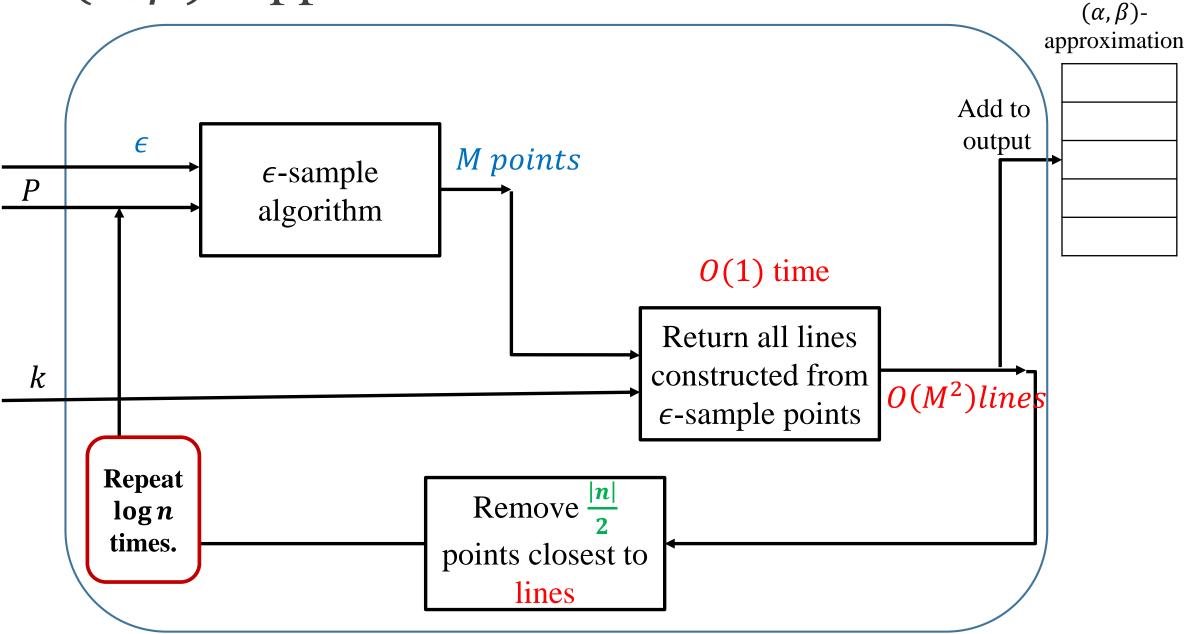
(k=1, d=2)Find ℓ'' by exhaustive search over every pair of points. $O(n^2)$











Analysis:

- M = number of points returned by the ϵ -sample algorithm
- $-\beta = O(M^2 \log n).$
- α = 4 since the ϵ -sample points is an 4-approximation.

- Input: $P \subseteq R^d$
- <u>Query space</u>: $Q = \{ \{\ell_1, \dots, \ell_k\} \mid \ell_i \text{ is a line in } \mathbb{R}^d \}$
- Cost function: $\forall L \in Q$: $dist(p,L) = \min_{\ell \in L} \min_{x \in \ell} ||p x||_2$, $f(p,L) = dist(p,L)^2$

• <u>Output:</u> $C \subseteq P \ s.t. \ \forall L \in Q:$ $\left| \sum_{p \in P} f(p,L) - \sum_{c \in C} f(c,L) \right| \le \epsilon \cdot \sum_{p \in P} f(p,L)$

- Input: $P \subseteq R^d$
- <u>Query space</u>: $Q = \{ \{\ell_1, \dots, \ell_k\} \mid \ell_i \text{ is a line in } \mathbb{R}^d \}$
- Cost function: $\forall L \in Q$: $dist(p,L) = \min_{\ell \in L} \min_{x \in \ell} ||p x||_2$, $f(p,L) = dist(p,L)^2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall L \in Q:$ $\left| \sum_{p \in P} f(p,L) - \sum_{c \in C} f(c,L) \right| \le \epsilon \cdot \sum_{p \in P} f(p,L)$
- \rightarrow Need to compute sensitivity s(p) for the problem above.

• Output:
$$C \subseteq P \text{ s.t. } \forall L \in Q:$$
$$\left| \sum_{p \in P} f(p,L) - \sum_{c \in C} f(c,L) \right| \le \epsilon \cdot \sum_{p \in P} f(p,L)$$

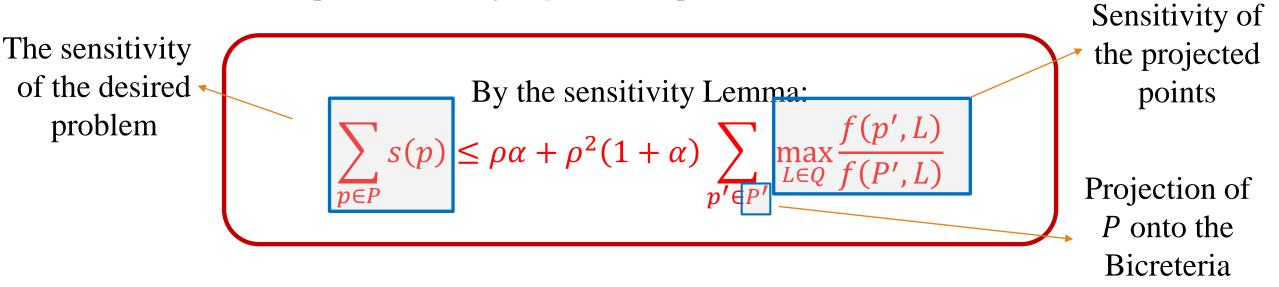
 \rightarrow Need to compute sensitivity s(p) for the problem above.

By the sensitivity Lemma:

$$\sum_{p \in P} s(p) \le \rho \alpha + \rho^2 (1 + \alpha) \sum_{p' \in P'} \max_{L \in Q} \frac{f(p', L)}{f(P', L)}$$

• Output:
$$C \subseteq P \ s.t. \ \forall L \in Q:$$
$$\left| \sum_{p \in P} dist^{2}(p,L) - \sum_{c \in C} dist^{2}(c,L) \right| \leq \epsilon \cdot \sum_{p \in P} dist^{2}(p,L)$$

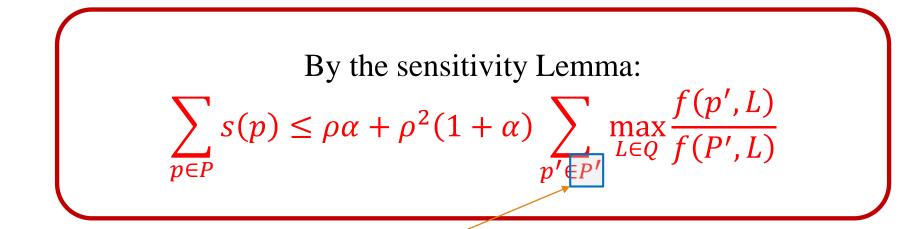
 \rightarrow Need to compute sensitivity s(p) for the problem above.



By the sensitivity Lemma:

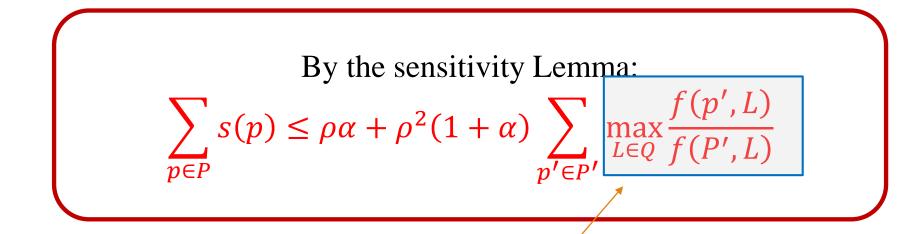
$$\sum_{p \in P} s(p) \le \rho \alpha + \rho^2 (1 + \alpha) \sum_{p' \in P'} \max_{L \in Q} \frac{f(p', L)}{f(P', L)}$$

✓ → Compute an (α , β)-approximation *B* for the *k*-lines mean problem as previously described.



✓ → Compute an (α , β)-approximation *B* for the *k*-lines mean problem as previously described.

✓ → Compute P' = projection of P onto B.

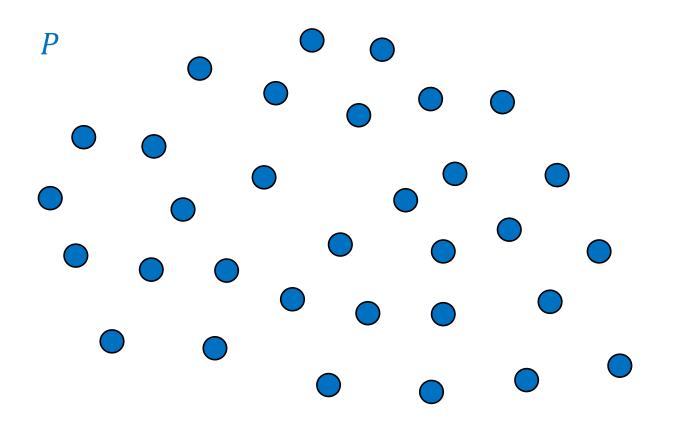


✓ → Compute an (α, β) -approximation *B* for the *k*-lines mean problem as previously described.

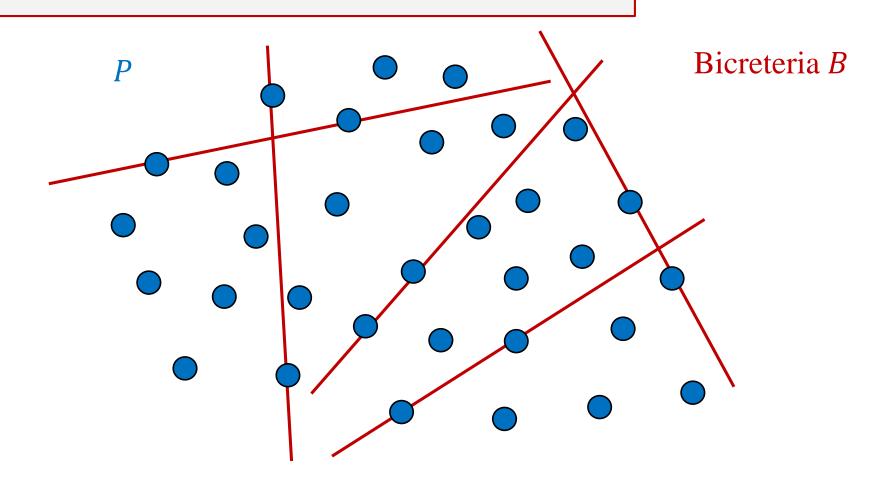
✓ → Compute P' = projection of P onto B.

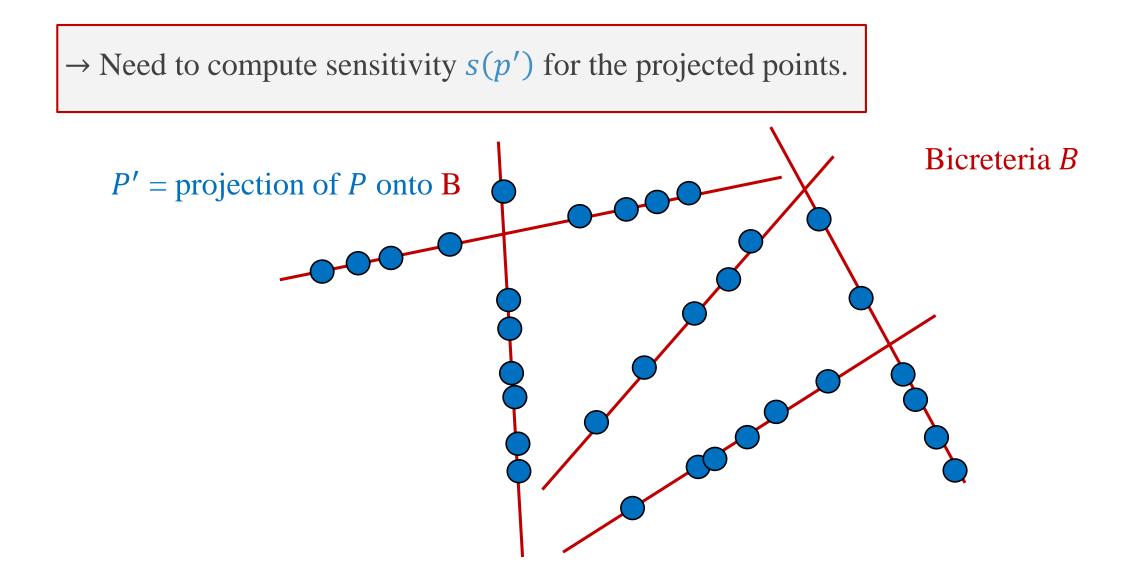
 \rightarrow Need to compute sensitivity s(p') for the projected points.

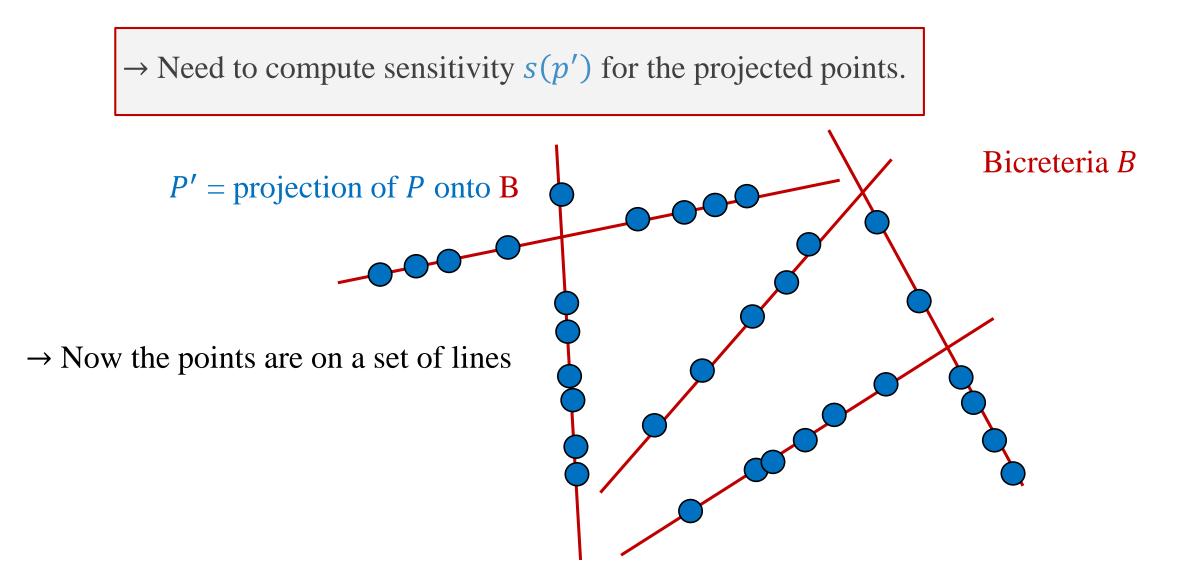
 \rightarrow Need to compute sensitivity s(p') for the projected points.

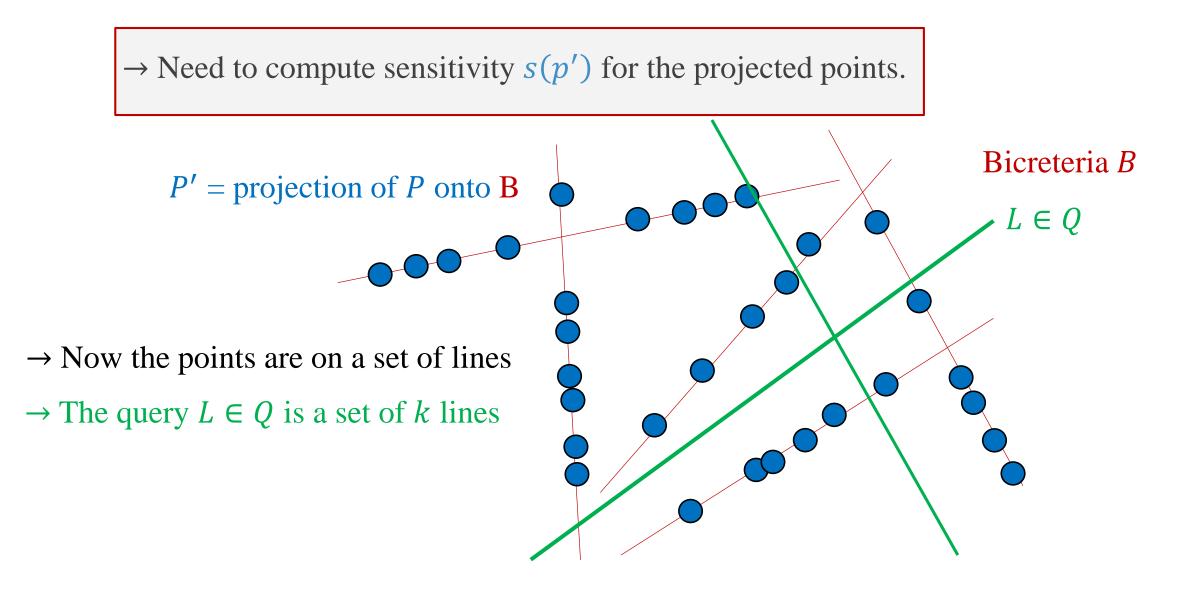


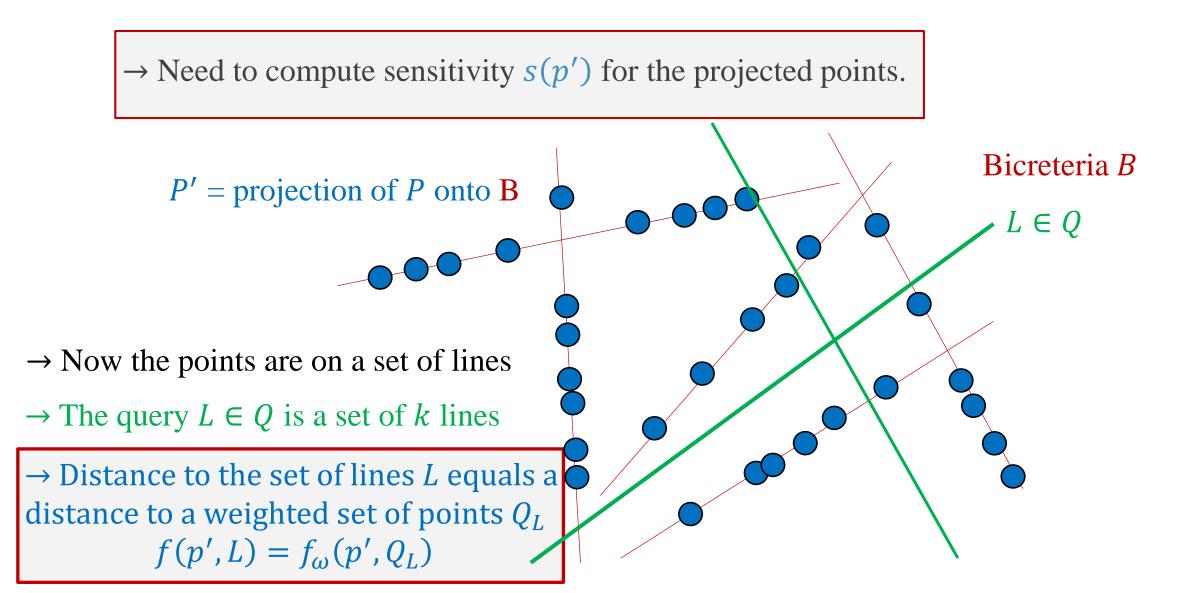
 \rightarrow Need to compute sensitivity s(p') for the projected points.











$$\rightarrow f(p',L) = f_{\omega}(p',Q_L) = \min_{\substack{(q,\omega) \in Q_L}} \omega \cdot \|p-q\|_2^2$$
$$\rightarrow s(p') = \max_{L \in Q} \frac{f(p',L)}{f(P',L)} = \max_{\substack{Q_L \in R^d}} \frac{f_{\omega}(p',Q_L)}{f_{\omega}(P',Q_L)}$$

→ Need to compute sensitivity for the **weighted** *k*-means problem

Weights are unknown beforehand (part of the query)

- <u>Input:</u> $P \subseteq R^d$
- <u>Query space</u>: $Q = \{\{(q_1, \omega_1), \dots, (q_k, \omega_k)\} \mid q_i \in \mathbb{R}^d, \omega_i \in [0, \infty)\}$
- <u>Cost function</u>: $\forall C \in Q$: $f_{\omega}(p,C) = \min_{\substack{(c,\omega) \in C}} \omega \cdot f(p,c) = \min_{\substack{(c,\omega) \in C}} \omega \cdot dist^{2}(p,c)$

- Input: $P \subseteq R^d$
- <u>Query space</u>: $Q = \{\{(q_1, \omega_1), \dots, (q_k, \omega_k)\} \mid q_i \in \mathbb{R}^d, \omega_i \in [0, \infty)\}$
- <u>Cost function</u>: $\forall C \in Q$: $f_{\omega}(p,C) = \min_{(c,\omega)\in C} \omega \cdot f(p,c) = \min_{(c,\omega)\in C} \omega \cdot dist^{2}(p,c)$ r (Lipschitz)
- The function f satisfies the following two conditions for every $p, q, c \in \mathbb{R}^d$:
- 1) For $\phi = (4r)^r$: $f(p,q) f(q,c) \le \phi f(p,q) + \frac{f(p,c)}{4}$.
- 2) For $\rho = \max\{2^{r-1}, 1\}$: $f(p,q) \le \rho(f(p,c) + f(c,q))$.

• Consider the following algorithm:

 $\begin{array}{l} \textbf{Robust-Median}(P,k):\\ - \ Q_0 = P\\ - \ \text{For } i = 1 \rightarrow k\\ \quad \text{Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1}\\ \quad Q_i = closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\}\\ - \ \text{Return } (q_k, Q_k) \end{array}$

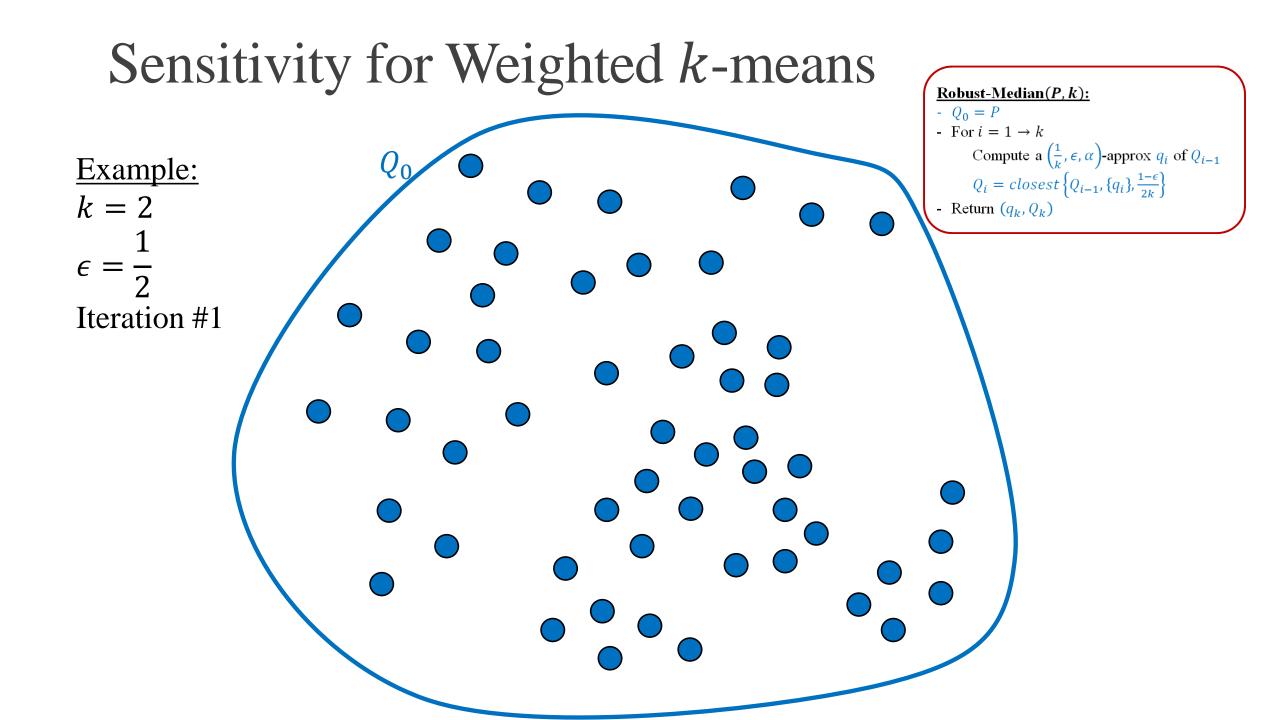
• Consider the following algorithm:

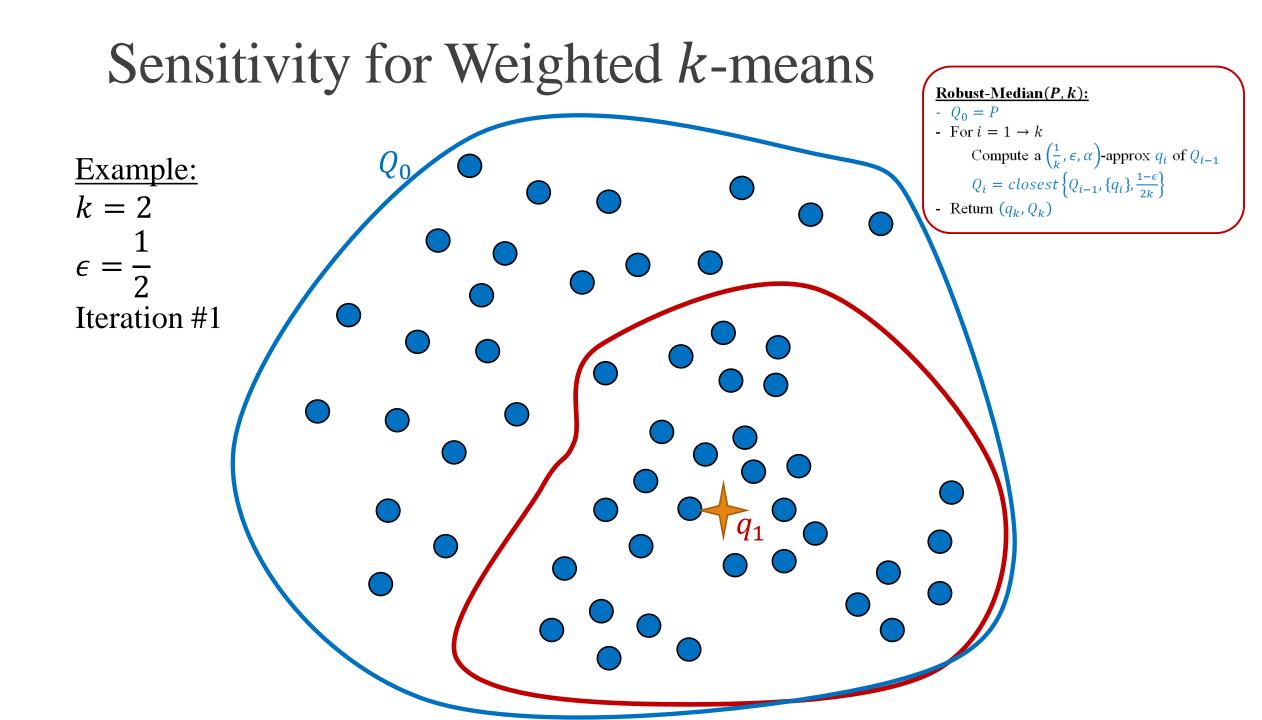
 $\begin{array}{l} \displaystyle \underline{\text{Robust-Median}(P,k):}\\ & - Q_0 = P\\ & - \text{ For } i = 1 \rightarrow k\\ & \text{ Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1}\\ & Q_i = closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\}\\ & - \text{ Return } (q_k, Q_k) \end{array}$

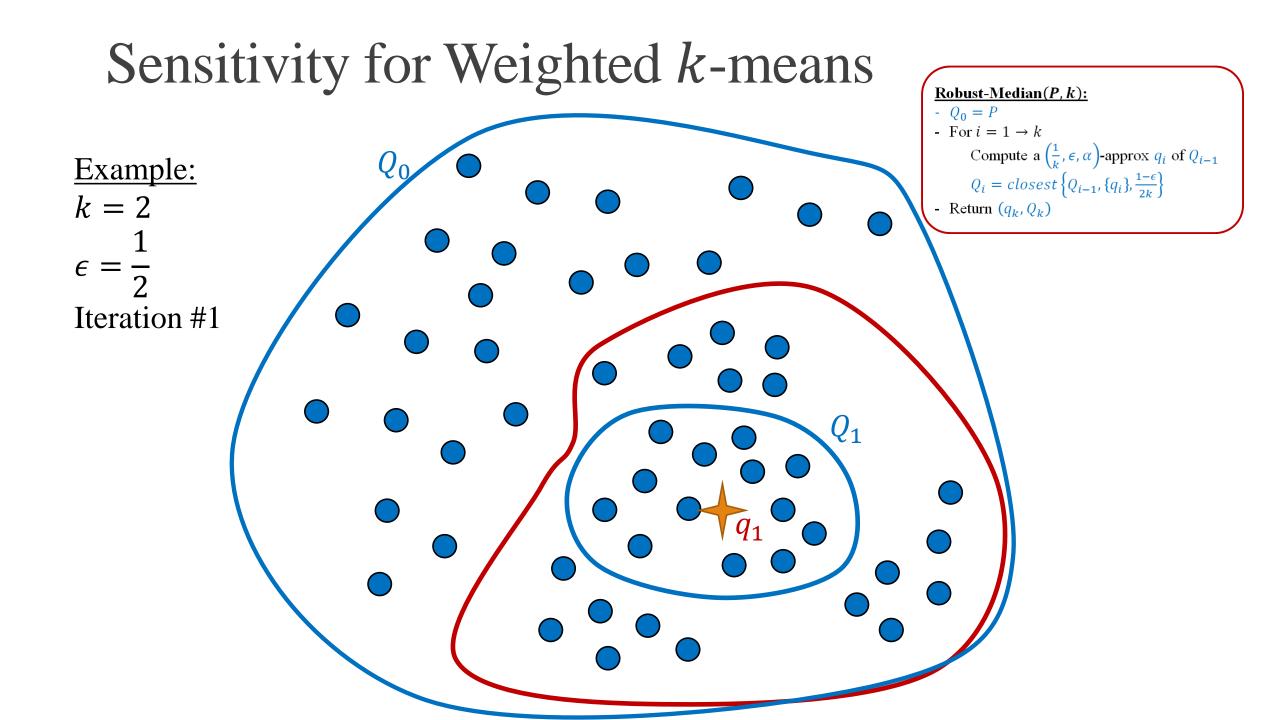
Lemma:

Let (q_k, Q_k) be the output of **Robust-Median**(P, k). Then for every $p \in Q_k$:

$$s(p) = \max_{C \in Q} \frac{f_{\omega}(p, C)}{\sum_{q \in P} f_{\omega}(q, C)} \le \frac{O(k)}{|Q_k|}$$





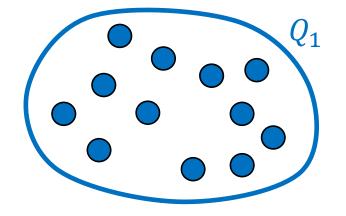


$$\begin{array}{l} \displaystyle \frac{\text{Robust-Median}(P,k):}{P} \\ \hline Q_0 = P \\ \hline \text{For } i = 1 \rightarrow k \\ & \text{Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1} \\ & Q_i = closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\} \\ \hline \text{Return } (q_k, Q_k) \end{array}$$

$$k = 2$$

$$\epsilon = \frac{1}{2}$$

Iteration #1

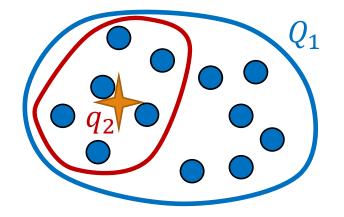


$$\begin{array}{l} \displaystyle \frac{\text{Robust-Median}(P,k):}{P} \\ \hline Q_0 = P \\ \hline \text{For } i = 1 \rightarrow k \\ & \text{Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1} \\ & Q_i = closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\} \\ \hline \text{Return } (q_k, Q_k) \end{array}$$

$$k = 2$$

$$\epsilon = \frac{1}{2}$$

Iteration #1

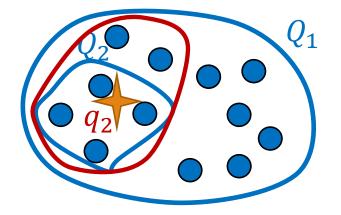


$$\begin{array}{l} \displaystyle \frac{\text{Robust-Median}(P,k):}{P} \\ \hline Q_0 = P \\ \hline \text{For } i = 1 \rightarrow k \\ & \text{Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1} \\ & Q_i = closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\} \\ \hline \text{Return } (q_k, Q_k) \end{array}$$

$$k = 2$$

$$\epsilon = \frac{1}{2}$$

Iteration #1

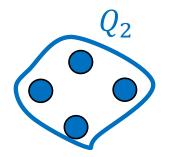


$$\begin{array}{l} \displaystyle \frac{\text{Robust-Median}(P,k):}{P} \\ - Q_0 &= P \\ - \text{ For } i = 1 \rightarrow k \\ \quad \text{ Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1} \\ \quad Q_i &= closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\} \\ - \text{ Return } (q_k, Q_k) \end{array}$$

$$k = 2$$

$$\epsilon = \frac{1}{2}$$

Iteration #1

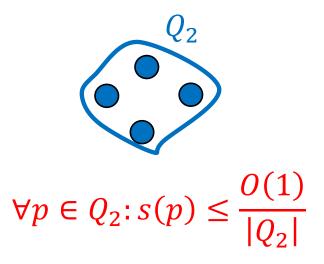


$$\begin{array}{l} \displaystyle \frac{\text{Robust-Median}(P,k):}{P} \\ - Q_0 &= P \\ - \text{ For } i = 1 \rightarrow k \\ \quad \text{ Compute a } \left(\frac{1}{k}, \epsilon, \alpha\right) \text{-approx } q_i \text{ of } Q_{i-1} \\ \quad Q_i &= closest \left\{Q_{i-1}, \{q_i\}, \frac{1-\epsilon}{2k}\right\} \\ - \text{ Return } (q_k, Q_k) \end{array}$$

$$k = 2$$

$$\epsilon = \frac{1}{2}$$

Iteration #



Proof:

Consider the variables Q_0, \ldots, Q_k and q_1, \ldots, q_k that are computed in the algorithm.

- $-p \in P$ is served by a weighted center $(c, \omega) \in C$ if $f_{\omega}(p, C) = \omega \cdot f(p, c)$.
- Let (c_i, ω_i) denote a center that serves at least $\frac{|Q_{i-1}|}{k}$ points from Q_{i-1} for every $i \in [k+1]$.
- Let P_i denote the points of P that are served by (c_i, ω_i) .
- Let $Q'_i \coloneqq closest\left(Q_{i-1}, \{q_i\}, \frac{(1-\epsilon)}{k}\right), f_i^* = \sum_{q \in Q'_i} f(q, q_i)$ for every $i \in [k]$.

Proof:

Consider the variables Q_0, \ldots, Q_k and q_1, \ldots, q_k that are computed in the algorithm.

- $-p \in P$ is served by a weighted center $(c, \omega) \in C$ if $f_{\omega}(p, C) = \omega \cdot f(p, c)$.
- Let (c_i, ω_i) denote a center that serves at least $\frac{|Q_{i-1}|}{k}$ points from Q_{i-1} for every $i \in [k+1]$.
- Let P_i denote the points of P that are served by (c_i, ω_i) .
- Let $Q'_i \coloneqq closest\left(Q_{i-1}, \{q_i\}, \frac{(1-\epsilon)}{k}\right), f_i^* = \sum_{q \in Q'_i} f(q, q_i)$ for every $i \in [k]$.

It follows that $|P_i \cap Q_{i-1}| \ge \frac{|Q_{i-1}|}{k} \ge |Q'_i|$

Proof:

Consider the variables Q_0, \ldots, Q_k and q_1, \ldots, q_k that are computed in the algorithm.

- $-p \in P$ is served by a weighted center $(c, \omega) \in C$ if $f_{\omega}(p, C) = \omega \cdot f(p, c)$.
- Let (c_i, ω_i) denote a center that serves at least $\frac{|Q_{i-1}|}{k}$ points from Q_{i-1} for every $i \in [k+1]$.
- Let P_i denote the points of P that are served by (c_i, ω_i) .
- Let $Q'_i \coloneqq closest\left(Q_{i-1}, \{q_i\}, \frac{(1-\epsilon)}{k}\right), f_i^* = \sum_{q \in Q'_i} f(q, q_i)$ for every $i \in [k]$.

It follows that
$$|P_i \cap Q_{i-1}| \ge \frac{|Q_{i-1}|}{k} \ge |Q'_i|$$
.
 $\rightarrow \sum_{q \in P_i \cap Q_{i-1}} f(q, c_i) \ge f^*\left(Q_{i-1}, \frac{1}{k}\right)$

$$f^*(Q_i, \gamma) = \min_{C \in Q} \sum_{p \in closest(Q_i, C, \gamma)} f(p, C)$$

Proof:

Case (i):

There is $i \in [k]$ such that: $f(p, c_i) \leq 16\phi\rho\alpha \cdot \frac{f_i^*}{|Q'_k|}$.

Case (ii): Otherwise.

Proof:

Case (i):

There is $i \in [k]$ such that: $f(p, c_i) \leq 16\phi\rho\alpha \cdot \frac{f_i^*}{|Q'_k|}$.

Case (ii): Otherwise.

Proof of Case (ii):

By the pigeonhole principle, $c_i = c_j$ for some $i, j \in [k + 1]$, i < j. Put $q \in P_j \cap Q_{j-1}$. Note that $p \in Q_k \subseteq Q_{j-1}$. Using the Markov inequality,

$$f(q,q_{j-1}),f(p,q_{j-1}) \le \frac{2f_{j-1}^*}{|Q_{j-1}'|}$$

Proof of Case (ii):

By the pigeonhole principle, $c_i = c_j$ for some $i, j \in [k + 1], i < j$. Put $q \in P_j \cap Q_{j-1}$. Note that $p \in Q_k \subseteq Q_{j-1}$. Using the Markov inequality,

$$f(q,q_{j-1}), f(p,q_{j-1}) \leq \frac{2f_{j-1}^{*}}{|Q_{j-1}'|}$$

Notice that

$$f(p,q) \leq \rho\left(f(p,q_{j-1}) + f(q_{j-1},q)\right) \leq \rho\left(\frac{2f_{j-1}^{*}}{|Q_{j-1}'|} + \frac{2f_{j-1}^{*}}{|Q_{j-1}'|}\right) \leq \frac{4\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|}$$

Weak triangle
inequality $\rightarrow f(p,q) \leq \frac{4\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|}$

$$\rightarrow f(p,c_j) - f(q,c_j) \leq \phi f(p,q) + \frac{f(p,c_j)}{4}$$

$$f(p,q) - f(q,c) \leq \phi f(p,q) + \frac{f(p,c)}{4}$$

$$\rightarrow f(p,c_j) - f(q,c_j) \le \phi f(p,q) + \frac{f(p,c_j)}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^*}{|Q_{j-1}'|} + \frac{f(p,c_j)}{4}$$
Proved in last slide

$$\rightarrow f(p,c_{j}) - f(q,c_{j}) \leq \phi f(p,q) + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|} + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho\alpha \cdot f_{i}^{*}}{|Q_{k}'|} + \frac{f(p,c_{j})}{4}$$

$$Q_{k} \subseteq Q_{j-1} \rightarrow |Q_{k}| \leq |Q_{j-1}| \rightarrow |Q_{k}'| \leq |Q_{j-1}'|$$

$$and f_{j-1}^{*} \leq \alpha f_{i}^{*}.$$

Proof of Case (ii):

$$\rightarrow f(p,c_j) - f(q,c_j) \leq \phi f(p,q) + \frac{f(p,c_j)}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^*}{|Q_{j-1}'|} + \frac{f(p,c_j)}{4}$$

$$\leq \frac{4\phi\rho\alpha \cdot f_i^*}{|Q_k'|} + \frac{f(p,c_j)}{4}$$

$$< \frac{f(p,c_i)}{4} + \frac{f(p,c_j)}{4}$$

$$< \frac{f(p,c_i)}{4} + \frac{f(p,c_j)}{4}$$

Since Case

 $16\phi\rho\alpha$ ·

$$\rightarrow f(p, c_{j}) - f(q, c_{j}) \leq \phi f(p, q) + \frac{f(p, c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|} + \frac{f(p, c_{j})}{4}$$

$$\leq \frac{4\phi\rho\alpha \cdot f_{i}^{*}}{|Q_{k}'|} + \frac{f(p, c_{j})}{4}$$

$$< \frac{f(p, c_{i})}{4} + \frac{f(p, c_{j})}{4}$$

$$= \frac{f(p, c_{j})}{4} + \frac{f(p, c_{j})}{4}$$

$$\rightarrow f(p,c_{j}) - f(q,c_{j}) \leq \phi f(p,q) + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|} + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{i}^{*}}{|Q_{k}'|} + \frac{f(p,c_{j})}{4}$$

$$< \frac{f(p,c_{i})}{4} + \frac{f(p,c_{j})}{4}$$

$$= \frac{f(p,c_{j})}{4} + \frac{f(p,c_{j})}{4} = \frac{f(p,c_{j})}{2}$$

$$\rightarrow f(p,c_{j}) - f(q,c_{j}) \leq \phi f(p,q) + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{j-1}^{*}}{|Q_{j-1}'|} + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{4\phi\rho \cdot f_{i}^{*}}{|Q_{k}'|} + \frac{f(p,c_{j})}{4}$$

$$\leq \frac{f(p,c_{i})}{4} + \frac{f(p,c_{j})}{4}$$

$$= \frac{f(p,c_{j})}{4} + \frac{f(p,c_{j})}{4} = \frac{f(p,c_{j})}{2}$$

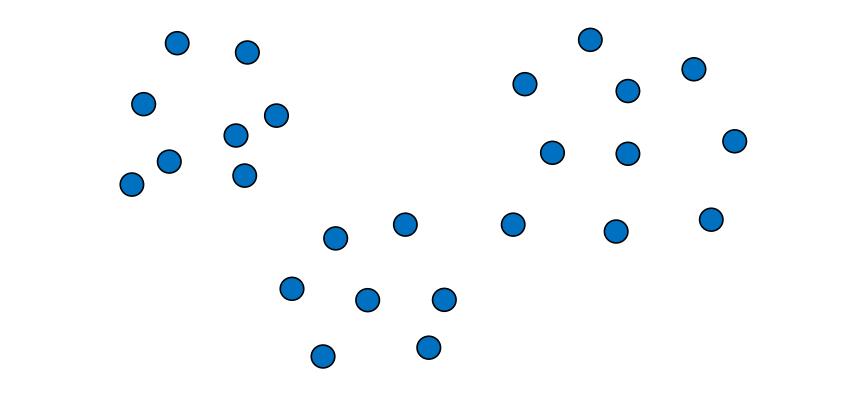
 \rightarrow

Proof:

$$\begin{aligned} \frac{f_{\omega}(p,C)}{\sum_{q\in P} f_{\omega}(q,C)} &\leq \frac{f(p,c_j)}{\sum_{q\in P_j\cap Q_{j-1}} f(q,c_j)} \\ &\leq \frac{2 \cdot f(p,c_j)}{\sum_{q\in P_j\cap Q_{j-1}} f(p,c_j)} \\ &= \frac{2 \cdot f(p,c_j)}{f(p,c_j) \cdot |P_j \cap Q_{j-1}|} \\ &\leq \frac{2k}{|Q_{j-1}|} \\ &\leq \frac{2k}{|Q_j|} \end{aligned}$$

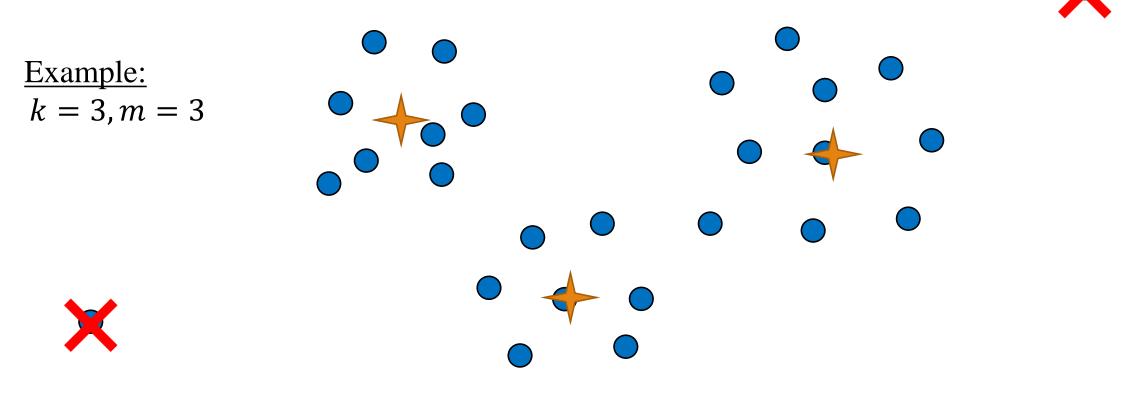
Definition:

Find k centers that minimize sum of squared distances to the closest n - m points i.e., ignore the farthest m points (outliers).



Definition:

Find k centers that minimize sum of squared distances to the closest n - m points i.e., ignore the farthest m points (outliers).



Solution: Solve the weighted *k*-means with k' = k + m and weights: $\omega_1, \dots, \omega_k = 1, \ \omega_{k+1}, \dots, \omega_{k+m} = \infty$

