Big Data Class

LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN ALAA MAALOUF

אוניברסיטת חיפה University of Haifa جامعة حيفا

Department of Computer Science, University of Haifa.

 $P \subseteq R^2$ • Input: • <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } \mathbb{R}^2\}$ • Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p - x||_2$ $\boldsymbol{C} \subseteq P \text{ s.t. } \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{\boldsymbol{c} \in \boldsymbol{C}} dist(\boldsymbol{c}, \ell) \leq \epsilon \cdot \max_{p \in P} dist(p, \ell)$ • <u>Output:</u>

 $P \subseteq R^2$ • Input: • <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } \mathbb{R}^2\}$ • Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p - x||_2$ $\boldsymbol{C} \subseteq P \text{ s.t. } \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{\boldsymbol{c} \in \boldsymbol{C}} dist(\boldsymbol{c}, \ell) \leq \epsilon \cdot \max_{p \in P} dist(p, \ell)$ • <u>Output:</u>

• <u>Input:</u> $P \subseteq R^2$

• <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } \mathbb{R}^2\}$

• Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p - x||_2$

• <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

• Input: $P \subseteq R^2$

• <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } \mathbb{R}^2\}$

• Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p - x||_2$

• <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 $dist(p, \ell') \leq 2 \cdot dist(p, \ell^*)$

 ℓ'' is the rotation of ℓ'' around p' to $\ell''s$ closest point

 $dist(p, \ell'') \le 2 \cdot dist(p, \ell')$

Find ℓ'' by exhaustive search over every pair of points. $O(n^2)$

<u>Claim:</u> The projected *n* points *P'* are a "coreset" (not part of the input data) for any line query:

 $\max_{p \in P} dist(p, \ell) - \max_{p \in P'} dist(p, \ell) \le \epsilon \cdot \widetilde{OPT}$

 $\leq 4\epsilon \cdot OPT$

 $\leq 4\epsilon \cdot \max_{p \in P} dist(p, \ell)$

$$\rightarrow$$
 Run with $\epsilon' = \frac{\epsilon}{4}$

$$\epsilon \cdot OPT$$

 $e \cdot OPT$
 e
 $dist(p, \ell)$

is the same weight for all points $\forall p \in \ell_i: dist(p, \ell) = \omega \cdot dist(p, q_i)$ \rightarrow Compute a 1-Center coreset C_i for each line $\ell_i!$

 $C = \bigcup C_i$

Has no effect since it

since a union of two coresets is a coreset.

Problem:

The coreset is not part of the input data.

Solution:

Pick the closest points in the input data to the points of C.

Problem: The coreset is not part of the input data.

Solution:

Pick the closest points in the input data to the points

 \rightarrow This adds another error of $\boldsymbol{\epsilon} \cdot \widetilde{\boldsymbol{OPT}}$

 $\max_{p \in P} dist(p, \ell) \le \max_{p \in P'} dist(p, \ell) + 2\epsilon \cdot \widetilde{OPT}$ $\leq (1+8\epsilon) \cdot \max_{p \in P'} dist(p, \ell)$

 $\frac{\text{Total time:}}{O(n^2)}.$ $\frac{\text{Coreset size:}}{|C| \le 2 \cdot \# \text{lines} = 2 \cdot \frac{2}{\epsilon} = \frac{4}{\epsilon}.$

Total time: $O(n^2)$. <u>Coreset size:</u> $|C| \le 2 \cdot \# lines = 2 \cdot \frac{2}{\epsilon} = \frac{4}{\epsilon}$.

Improvement:

Run the above algorithm using the streaming tree. Run on batches of size $2 \cdot |C| = \frac{8}{\epsilon}$. <u>Total time:</u>

$$O(n \cdot TimeForBatch) = O\left(n \cdot \left(\frac{8}{\epsilon}\right)^2\right).$$

Error for streaming tree: The error increases to $(1 + \epsilon)^{\log n} \sim (1 + \epsilon \log n)$ $\rightarrow \text{Run with } \epsilon' = \frac{\epsilon}{\log n}.$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\pi \mid \pi \text{ is a plane in } \mathbb{R}^3\}$
- Cost function: $dist(p,\pi) = \min_{x \in \pi} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \pi \in Q: \max_{p \in P} dist(p, \pi) \max_{c \in C} dist(c, \pi) \le \epsilon \cdot \max_{p \in P} dist(p, \pi)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\pi \mid \pi \text{ is a plane in } \mathbb{R}^3\}$
- Cost function: $dist(p,\pi) = \min_{x \in \pi} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \pi \in Q: \max_{p \in P} dist(p, \pi) \max_{c \in C} dist(c, \pi) \le \epsilon \cdot \max_{p \in P} dist(p, \pi)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\pi \mid \pi \text{ is a plane in } \mathbb{R}^3\}$
- Cost function: $dist(p,\pi) = \min_{x \in \pi} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \pi \in Q: \max_{p \in P} dist(p, \pi) \max_{c \in C} dist(c, \pi) \le \epsilon \cdot \max_{p \in P} dist(p, \pi)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\pi \mid \pi \text{ is a plane in } \mathbb{R}^3\}$
- Cost function: $dist(p,\pi) = \min_{x \in \pi} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \pi \in Q: \max_{p \in P} dist(p, \pi) \max_{c \in C} dist(c, \pi) \le \epsilon \cdot \max_{p \in P} dist(p, \pi)$

 π^* is the plane that minimizes $\max_{p \in P} dist(p, \pi)$

 π^* is the plane that minimizes $\max_{p \in P} dist(p, \pi)$

 π' is the translation of π^* to $\pi^{*'s}$ closest point p'

π' is the translation of π^* to $\pi^*'s$ closest point p'

 π' is the translation of π^* to $\pi^{*'s}$ closest point p'

 π'' is the rotation of π' around p' to $\pi's$ closest point p''

 π'' is the rotation of π' around p' to $\pi's$ closest point p''

 π'' is the rotation of π' around p' to $\pi's$ closest point p''

 π''' is the rotation of π'' around p' - p'' to $\pi''s$ closest point p'''

Find π''' by exhaustive search over every triplet of points. $O(n^3)$

Build a grid of planes with $\epsilon \cdot \widetilde{OPT}$ distance

Find π''' by exhaustive search over every triplet of points. $O(n^3)$

Build a grid of planes with $\epsilon \cdot \widetilde{OPT}$ distance

Project each point onto it's closest plane

 $\forall p \in \pi_i: dist(p, \pi) = \omega \cdot dist(p, \ell_i)$

$$\ell_i = \pi_i \cap \pi$$

 $\forall p \in \pi_i: dist(p, \pi) = \omega \cdot dist(p, \ell_i)$

$$\pi_{1}$$

$$\pi_{2}$$

$$\pi_{4}$$

$$\pi_{5}$$

$$\pi_{4}$$

$$\pi_{5}$$

$$\pi_{6} \cdot OPT$$

$$\ell_i = \pi_i \cap \pi$$

→ Compute a **1-Line** coreset C_i for each plane π_i !

 $C = \bigcup C_i$

since a union of two coresets is a coreset.

HyperplaneCoreset(P, d):

• $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct a hyperplane parallel to h'. $\left(\#Hyperplanes = \frac{2}{\epsilon}\right)$

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct a hyperplane parallel to h'. $\left(\# Hyperplanes = \frac{2}{c} \right)$
- Compute the projection p' of each point $p \in P$ onto it's closest hyperplane h_p .

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct a hyperplane parallel to h'. $\left(\# Hyperplanes = \frac{2}{\epsilon} \right)$
- Compute the projection p' of each point $p \in P$ onto it's closest hyperplane h_p .
- $H_p \leftarrow \text{an } R^{d \times d 1}$ matrix whose columns span h_p and $H_p^T H_p = I$.

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct a hyperplane parallel to h'. $(\#Hyperplanes = \frac{2}{\epsilon})$
- Compute the projection p' of each point $p \in P$ onto it's closest hyperplane h_p .
- $H_p \leftarrow \text{an } R^{d \times d 1}$ matrix whose columns span h_p and $H_p^T H_p = I$.
- $P' = \{H_p p' | p \in P\}.$

- $h' \leftarrow \text{an } \alpha$ -approximation for the optimal hyperplane of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the vector that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct a hyperplane parallel to h'. $(\#Hyperplanes = \frac{2}{\epsilon})$
- Compute the projection p' of each point $p \in P$ onto it's closest hyperplane h_p .
- $H_p \leftarrow \text{an } R^{d \times d-1}$ matrix whose columns span h_p and $H_p^T H_p = I$.
- $P' = \{H_p p' | p \in P\}$
- Call HyperplaneCoreset(P', d-1).

 $\frac{\text{Total time:}}{O(n^d)}$

 $\frac{\text{Coreset size:}}{|C| \le \left(\frac{1}{\epsilon}\right)^{O(d)}}$

 $\frac{\text{Total time:}}{O(n^d)}$

 $\frac{\text{Coreset size:}}{|C| \le \left(\frac{1}{\epsilon}\right)^{O(d)}}$

Improvement:

Run the above algorithm using the streaming tree. Run on batches of size $2 \cdot |C| \le 2 \left(\frac{1}{\epsilon}\right)^{O(d)}$. <u>Total time:</u>

$$O(n \cdot TimeForBatch) = O\left(n \cdot \left(\frac{1}{\epsilon}\right)^{O(d^2)}\right)$$

Error for streaming tree: The error increases to $(1 + \epsilon)^{\log n} \sim (1 + \epsilon \log n)$ $\rightarrow \text{Run with } \epsilon' = \frac{\epsilon}{\log n}.$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3 \text{ parallel to the z-axis}\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$

• <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3 \text{ parallel to the z-axis}\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$

• <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) - \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3 \text{ parallel to the z-axis}\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \text{ s.t. } \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3 \text{ parallel to the z-axis}\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \text{ s.t. } \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

proj(p, xy)Notice that: $dist(p, \ell) = dist(p', p_{\ell})$ \downarrow $\ell \cap xy$ -plane

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

- Input: $P \subseteq R^3$
- <u>Query space</u>: $Q = \{\ell \mid \ell \text{ is a line in } R^3\}$
- Cost function: $dist(p, \ell) = \min_{x \in \ell} ||p x||_2$
- <u>Output:</u> $C \subseteq P \ s.t. \ \forall \ell \in Q: \max_{p \in P} dist(p, \ell) \max_{c \in C} dist(c, \ell) \le \epsilon \cdot \max_{p \in P} dist(p, \ell)$

ℓ'

Similar to the problem in R^2 , there is a line ℓ'' that passes through 2 points of the data and is a 4-approx. to the optimal line ℓ^* .

 $dist(p, \ell'') \leq 4 \cdot dist(p, \ell^*)$

 ℓ^* is the line that minimizes $\max_{p \in P} dist(p, \ell)$

 ℓ' is the translation of ℓ^* to $\ell^{*'s}$ closest point p'

 ℓ'' is the rotation of ℓ' around p' to $\ell''s$ closest point p''

Find ℓ'' by exhaustive search over every pair of points. $O(n^2)$

 \widetilde{OPT}

 ℓ''

Find ℓ'' by exhaustive search over every pair of points. $O(n^2)$

Project onto the plane π perpendicular to ℓ''

 ℓ''

Find ℓ'' by exhaustive search over every pair of points. $O(n^2)$

Project onto the plane π perpendicular to ℓ''

Build a grid with distances $\boldsymbol{\epsilon} \cdot \widetilde{\boldsymbol{OPT}}$

Claim 1:

Let *S* be an *r*-dimensional subspace of \mathbb{R}^d and let *L* be an (r + j)-dimensional subspace of \mathbb{R}^d that contains *S*. Let V be a *j*-dimensional subspace of \mathbb{R}^d . Then there is an orthogonal matrix *U* such that Ux = x for every $x \in S$, and $Uc \in L$ for every $c \in V$.

Claim 2:

Let $A \in \mathbb{R}^{n \times d}$ be a matrix of rank r and let L be an (r + j + 1)-dimensional subspace of \mathbb{R}^d that contains the row vectors (A_{i*}) for every $1 \le i \le n$. Then for evert affine j-dimensional subspace V of \mathbb{R}^d there is a corresponding affine jdimensional subspace $V' \subseteq L$ such that for every $i \in [n]$ we have

 $dist(A_{i*}, V) = dist(A_{i*}, V').$

r = j = 1

r = j = 1

JSubspaceCoreset(P,j):

• $h' \leftarrow$ an α -approximation for the affine *j*-subspace center of *P*.

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the affine d j-subspace that is orthogonal to h'.

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.

JSubspaceCoreset(P, j):

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- h^{\perp} \leftarrow the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct an affine *j*-subspace parallel to h'.

#JSubspaces = $O\left(\left(\frac{2}{\epsilon}\right)^{d-j}\right)$.

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- h^{\perp} \leftarrow the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct an affine *j*-subspace parallel to *h'*. #JSubspaces = $0\left(\left(\frac{2}{\epsilon}\right)^{d-j}\right)$.
- Compute the projection p' of each point $p \in P$ onto it's closest affine *j*-subspace h_p .

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct an affine *j*-subspace parallel to *h'*. #JSubspaces = $O\left(\left(\frac{2}{\epsilon}\right)^{d-j}\right)$.
- Compute the projection p' of each point $p \in P$ onto it's closest affine *j*-subspace h_p .
- $H_p \leftarrow \text{an } R^{d \times j}$ matrix whose columns span h_p and $H_p^T H_p = I$.

<u>JSubspaceCoreset(P, j):</u>

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct an affine *j*-subspace parallel to *h'*. #JSubspaces = $0\left(\left(\frac{2}{\epsilon}\right)^{d-j}\right)$.
- Compute the projection p' of each point $p \in P$ onto it's closest affine *j*-subspace h_p .
- $H_p \leftarrow \text{an } R^{d \times j}$ matrix whose columns span h_p and $H_p^T H_p = I$.
- $P' = \{H_p p' \mid p \in P\}.$

<u>JSubspaceCoreset(P, j):</u>

- $h' \leftarrow \text{an } \alpha$ -approximation for the affine *j*-subspace center of *P*.
- $\widetilde{OPT} = \max_{p \in P} dist(p, h').$
- $h^{\perp} \leftarrow$ the affine d j-subspace that is orthogonal to h'.
- Construct a grid on h^{\perp} whose cell length is $\epsilon \cdot \widetilde{OPT}$.
- Through each grid point construct an affine *j*-subspace parallel to *h'*. #JSubspaces = $0\left(\left(\frac{2}{\epsilon}\right)^{d-j}\right)$.
- Compute the projection p' of each point $p \in P$ onto it's closest affine *j*-subspace h_p .
- $H_p \leftarrow \text{an } R^{d \times j}$ matrix whose columns span h_p and $H_p^T H_p = I$.
- $P' = \{H_p p' \mid p \in P\}.$
- Call HyperplaneCoreset(P', j).