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Coreset for 1-Line in 𝑅2

• Input: 𝑃 ⊆ 𝑅2

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅2}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
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Coreset for 1-Line in 𝑅2

ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗
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ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑝′
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around 𝑝′ to ℓ′
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𝑠 closest 

point
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𝒅𝒊𝒔𝒕 𝒑, ℓ′′ ≤ 𝟒 ⋅ 𝒅𝒊𝒔𝒕 𝒑, ℓ∗
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ℓ′′
Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

෫𝑂𝑃𝑇
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Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

𝜖 ⋅෫𝑂𝑃𝑇



Coreset for 1-Line in 𝑅2

Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

Project each point onto

it’s closest line

𝜖 ⋅෫𝑂𝑃𝑇
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Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Build a grid of lines with

𝜖 ⋅෫𝑂𝑃𝑇 distance

Project each point onto

it’s closest line

𝜖 ⋅෫𝑂𝑃𝑇

Data dimension is now reduced.



Coreset for 1-Line in 𝑅2

Claim: The projected 𝑛 points 𝑃′
are a “coreset” (not part of the input data) 

for any line query:

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ 𝜖 ⋅෫𝑂𝑃𝑇

≤ 4𝜖 ⋅ 𝑂𝑃𝑇

→ Run with 𝜖′ =
𝜖

4

≤ 4𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
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𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6
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𝜖 ⋅෫𝑂𝑃𝑇

∀𝑝 ∈ ℓ𝑖: 𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞𝑖

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

𝑞1
𝜔𝑞2𝑞3𝑞4𝑞5

𝑞6

𝜔
𝜔

𝜔
𝜔

𝜔

→ Compute a 𝟏-Center coreset 𝑪𝒊
for each line ℓ𝒊! 

Has no effect since it 

is the same weight for 

all points
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∀𝑝 ∈ ℓ𝑖: 𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝑞𝑖

→ Compute a 𝟏-Center coreset 𝑪𝒊
for each line ℓ𝒊! 𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Has no effect since it 

is the same weight for 

all points

𝑪 = ራ𝑪𝒊

since a union of two 

coresets is a coreset.
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𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part 

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.
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𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part 

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.

→ This adds another error

of 𝝐 ⋅ ෫𝑶𝑷𝑻

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ + 2𝜖 ⋅෫𝑂𝑃𝑇

≤ 1 + 8𝜖 ⋅ max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ
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𝜖 ⋅෫𝑂𝑃𝑇

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5ℓ6

Problem:

The coreset is not part 

of the input data.

Solution:

Pick the closest points in

the input data to the points

of 𝐶.

→ This adds another error

of 𝝐 ⋅ ෫𝑶𝑷𝑻

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝑃′

𝑑𝑖𝑠𝑡 𝑝, ℓ ≤ 2𝜖 ⋅෫𝑂𝑃𝑇

≤ 8𝜖 ⋅ 𝑂𝑃𝑇 ≤ 8𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
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Total time:

𝑂(𝑛2).

Coreset size:

𝐶 ≤ 2 ⋅ #𝑙𝑖𝑛𝑒𝑠 = 2 ⋅
2

𝜖
=
4

𝜖
.
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Total time:

𝑂(𝑛2).
Improvement:

Run the above algorithm using the streaming tree.

Run on batches of size 2 ⋅ 𝐶 =
8

𝜖
.

Total time:

O n ⋅ 𝑇𝑖𝑚𝑒𝐹𝑜𝑟𝐵𝑎𝑡𝑐ℎ = O 𝑛 ⋅
8

𝜖

2

.

Error for streaming tree:

The error increases to 1 + 𝜖 log 𝑛~ 1 + 𝜖 log 𝑛

→ Run with 𝜖′ =
𝜖

log 𝑛
.

Coreset size:

𝐶 ≤ 2 ⋅ #𝑙𝑖𝑛𝑒𝑠 = 2 ⋅
2

𝜖
=
4

𝜖
.



Coreset for 1-Plane in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {𝜋 ∣ 𝜋 𝑖𝑠 𝑎 𝑝𝑙𝑎𝑛𝑒 𝑖𝑛 𝑅3}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, 𝜋 = min
𝑥∈𝜋

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀𝜋 ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝜋 − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, 𝜋 ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝜋
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𝜋∗

𝜋∗ is the plane that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝜋
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𝜋∗

𝜋∗ is the plane that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝜋

𝜋′ is the translation of 𝜋∗ to

𝜋∗′𝑠 closest point 𝑝′

𝜋′
𝑝′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗
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𝜋′ is the translation of 𝜋∗ to

𝜋∗′𝑠 closest point 𝑝′

𝜋′
𝑝′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗



Coreset for 1-Plane in 𝑅3

𝜋′ is the translation of 𝜋∗ to

𝜋∗′𝑠 closest point 𝑝′

𝜋′ 𝜋′′

𝜋′′ is the rotation of 𝜋′

around 𝑝′ to 𝜋′𝑠 closest 

point 𝑝′′

𝑝′𝑝′′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′
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𝜋′′

𝜋′′ is the rotation of 𝜋′

around 𝑝′ to 𝜋′𝑠 closest 

point 𝑝′′

𝑝′𝑝′′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′
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𝜋′′ is the rotation of 𝜋′

around 𝑝′ to 𝜋′𝑠 closest 

point 𝑝′′𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′ 𝜋′′′ is the rotation of 𝜋′′

around 𝑝′ − 𝑝′′ to 𝜋′′𝑠 closest 

point 𝑝′′′

𝜋′′
𝑝′𝑝′′

𝑝′′′𝜋′′′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′′
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𝑑𝑖𝑠𝑡 𝑝, 𝜋′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′ 𝜋′′′ is the rotation of 𝜋′′

around 𝑝′ − 𝑝′′ to 𝜋′′𝑠 closest 

point 𝑝′′′

𝑝′𝑝′′

𝑝′′′𝜋′′′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋′′

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′′ ≤ 8 ⋅ 𝑑𝑖𝑠𝑡 𝑝, 𝜋∗



Coreset for 1-Plane in 𝑅3

𝑝′𝑝′′

𝑝′′′𝜋′′′

෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, 𝜋′′′

Find 𝜋′′′ by exhaustive search 

over every triplet of points.

𝑶 𝒏𝟑



Coreset for 1-Plane in 𝑅3

𝜖 ⋅෫𝑂𝑃𝑇

Find 𝜋′′′ by exhaustive search 

over every triplet of points.

𝑶 𝒏𝟑

Build a grid of planes with

𝜖 ⋅෫𝑂𝑃𝑇 distance



Coreset for 1-Plane in 𝑅3

𝜖 ⋅෫𝑂𝑃𝑇

Find 𝜋′′′ by exhaustive search 

over every triplet of points.

𝑶 𝒏𝟑

Build a grid of planes with

𝜖 ⋅෫𝑂𝑃𝑇 distance

Project each point onto

it’s closest plane



Coreset for 1-Plane in 𝑅3

𝜖 ⋅෫𝑂𝑃𝑇

∀𝑝 ∈ 𝜋𝑖: 𝑑𝑖𝑠𝑡 𝑝, 𝜋 = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ𝑖

𝜋1
𝜋2

𝜋3
𝜋4

𝜋5

𝜋

ℓ1

ℓ𝑖 = 𝜋𝑖 ∩ 𝜋

𝜔



Coreset for 1-Plane in 𝑅3

𝜖 ⋅෫𝑂𝑃𝑇

∀𝑝 ∈ 𝜋𝑖: 𝑑𝑖𝑠𝑡 𝑝, 𝜋 = 𝜔 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ𝑖

𝜋1
𝜋2

𝜋3
𝜋4

𝜋5

𝜋

ℓ1

ℓ𝑖 = 𝜋𝑖 ∩ 𝜋

𝜔

→ Compute a 𝟏-Line coreset 𝑪𝒊
for each plane 𝝅𝒊! 

𝑪 = ራ𝑪𝒊

since a union of two 

coresets is a coreset.



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct a hyperplane parallel to ℎ′. #𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 =
2

𝜖



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct a hyperplane parallel to ℎ′. #𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 =
2

𝜖

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest hyperplane ℎ𝑝.



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct a hyperplane parallel to ℎ′. #𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 =
2

𝜖

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest hyperplane ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑑−1 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 

• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct a hyperplane parallel to ℎ′. #𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 =
2

𝜖

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest hyperplane ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑑−1 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 

• 𝑃′ = {𝐻𝑝𝑝
′|𝑝 ∈ 𝑃}.



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷, 𝒅 :

• ℎ′ ← an 𝛼-approximation for the optimal hyperplane of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the vector that is orthogonal to ℎ′. 

• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct a hyperplane parallel to ℎ′. #𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 =
2

𝜖

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest hyperplane ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑑−1 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 

• 𝑃′ = {𝐻𝑝𝑝
′|𝑝 ∈ 𝑃}

• Call 𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷′, 𝒅 − 𝟏 .



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

Total time:

𝑂(𝑛𝑑)

Coreset size:

𝐶 ≤
1

𝜖

𝑂 𝑑



Coreset for 𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 in 𝑅𝑑

Total time:

𝑂(𝑛𝑑)
Improvement:

Run the above algorithm using the streaming tree.

Run on batches of size 2 ⋅ 𝐶 ≤ 2
1

𝜖

𝑂 𝑑
.

Total time:

O n ⋅ 𝑇𝑖𝑚𝑒𝐹𝑜𝑟𝐵𝑎𝑡𝑐ℎ = O 𝑛 ⋅
1

𝜖

𝑂 𝑑2

.

Error for streaming tree:

The error increases to 1 + 𝜖 log 𝑛~ 1 + 𝜖 log 𝑛

→ Run with 𝜖′ =
𝜖

log 𝑛
.

Coreset size:

𝐶 ≤
1

𝜖

𝑂 𝑑



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑧-𝑎𝑥𝑖𝑠}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑧-𝑎𝑥𝑖𝑠}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑧-𝑎𝑥𝑖𝑠}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑧-𝑎𝑥𝑖𝑠}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ

𝑝

𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ

𝑝

𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Compute a 𝟏-Center coreset 𝑪′

for 𝑷′



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Return to original data

𝑪′ → 𝑪

→ Compute a 𝟏-Center coreset 𝑪′

for 𝑷′



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Compute a 𝟏-Center coreset 𝑪′

for 𝑷′

→ Return to original data

𝑪′ → 𝑪

∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Compute a 𝟏-Center coreset 𝑪′

for 𝑷′

→ Return to original data

𝑪′ → 𝑪

∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, ℓ

= max
𝑝′∈𝑃′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ − max
𝑝′∈𝐶′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Compute a 𝟏-Center coreset 𝑪′

for 𝑷′

→ Return to original data

𝑪′ → 𝑪

∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, ℓ

= max
𝑝′∈𝑃′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ − max
𝑝′∈𝐶′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

≤ 𝜖 ⋅ max
𝑝′∈𝑃′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

𝐶′ is a 1-Center coreset



Coreset for 1-Line parallel to 𝑧-axis in 𝑅3

ℓ

𝑝ℓ
𝑝′

Notice that:

𝑑𝑖𝑠𝑡 𝑝, ℓ = 𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

ℓ ∩ 𝑥𝑦-plane

→ Project points onto 𝒙𝒚-plane

𝑷′ = 𝒑′ 𝒑 ∈ 𝑷

𝑝𝑟𝑜𝑗 𝑝, 𝑥𝑦

→ Compute a 𝟏-Center coreset 𝑪
for 𝑷′

→ Return to original data

𝑪′ → 𝑪

∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, ℓ

= max
𝑝′∈𝑃′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ − max
𝑝′∈𝐶′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

≤ 𝜖 ⋅ max
𝑝′∈𝑃′

𝑑𝑖𝑠𝑡 𝑝′, 𝑝ℓ

= 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line in 𝑅3

• Input: 𝑃 ⊆ 𝑅3

• Query space: 𝑄 = {ℓ ∣ ℓ 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅3}

• Cost function: 𝑑𝑖𝑠𝑡 𝑝, ℓ = min
𝑥∈ℓ

𝑝 − 𝑥 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀ℓ ∈ 𝑄:max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ − max
𝑐∈𝐶

𝑑𝑖𝑠𝑡 𝑐, ℓ ≤ 𝜖 ⋅ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ



Coreset for 1-Line in 𝑅3

ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝′

ℓ′′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest 

point 𝑝′′

Similar to the problem in 𝑅2,

there is a line ℓ′′ that passes through

2 points of the data and is a

4-approx. to the optimal line ℓ∗.

𝑑𝑖𝑠𝑡 𝑝, ℓ′′ ≤ 4 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗𝑝′′



Coreset for 1-Line in 𝑅3

ℓ′′

෫𝑂𝑃𝑇

Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐



Coreset for 1-Line in 𝑅3

ℓ′′

෫𝑂𝑃𝑇

Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Project onto the plane 𝜋
perpendicular to ℓ′′



Coreset for 1-Line in 𝑅3

ℓ′′

෫𝑂𝑃𝑇

Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Project onto the plane 𝜋
perpendicular to ℓ′′

Build a grid with 

distances 𝝐 ⋅ ෫𝑶𝑷𝑻
𝜋

𝜖 ⋅෫𝑂𝑃𝑇



Coreset for 1-Line in 𝑅3

ℓ′′

෫𝑂𝑃𝑇

Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

Project onto the plane 𝜋
perpendicular to ℓ′′

Build a grid with 

distances 𝝐 ⋅ ෫𝑶𝑷𝑻
𝜋

𝜖 ⋅෫𝑂𝑃𝑇

Through each grid point

draw a line parallel to ℓ′′



𝜖 ⋅෫𝑂𝑃𝑇

𝜖 ⋅෫𝑂𝑃𝑇

→ Through each grid point draw a line parallel to ℓ′′



→ Project each point onto closest line

𝜖 ⋅෫𝑂𝑃𝑇

𝜖 ⋅෫𝑂𝑃𝑇

→ Through each grid point draw a line parallel to ℓ′′



Distance between 𝑝 ∈ ℓ and ℓ′

ℓ

ℓ′

𝑝

𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝜃 is the angle between 

the line directions

ℓ

ℓ′

𝜃

Top view

𝑝



Distance between 𝑝 ∈ ℓ and ℓ′

ℓ

ℓ′

𝑝

𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑐′

(closest point to ℓ′)

𝜃 is the angle between 

the line directions

ℓ

ℓ′

𝜃

Top view

𝑝
𝑐′



Distance between 𝑝 ∈ ℓ and ℓ′

ℓ

ℓ′

𝑝

𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑐′

(closest point to ℓ′)

𝜃 is the angle between 

the line directions

𝑑𝑖𝑠𝑡 ℓ, ℓ′

ℓ

ℓ′

𝜃

Top view

𝑝
𝑐′



Distance between 𝑝 ∈ ℓ and ℓ′

ℓ

ℓ′

𝑝

𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑐′

(closest point to ℓ′)

𝑐

point on the line that
spans the shortest distance
between ℓ and ℓ′

𝜃 is the angle between 

the line directions

𝑑𝑖𝑠𝑡 ℓ, ℓ′

sin 𝜃

ℓ

ℓ′

𝜃

Top view

𝑝
𝑐



Distance between 𝑝 ∈ ℓ and ℓ′

ℓ

ℓ′

𝑝

𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑐′

(closest point to ℓ′)

𝑐

point on the line that
spans the shortest distance
between ℓ and ℓ′

𝜃 is the angle between 

the line directions

𝑑𝑖𝑠𝑡 ℓ, ℓ′

sin 𝜃

→ 𝒅𝒊𝒔𝒕 𝒑, ℓ′ = 𝒔𝒊𝒏𝜽 ⋅ 𝒅𝒊𝒔𝒕 𝒑, 𝒄

ℓ

ℓ′

𝜃

Top view

𝑝
𝑐



→ Project each point onto closest line

→ Through each grid point draw a line parallel to ℓ′′

𝜖 ⋅෫𝑂𝑃𝑇

𝜖 ⋅෫𝑂𝑃𝑇



→ Project each point onto closest line

→ ∀𝒑′ ∈ ℓ𝒊:
𝒅𝒊𝒔𝒕 𝒑′, ℓ = 𝝎 ⋅ 𝒅𝒊𝒔𝒕 𝒑′, 𝒄𝒊

ℓ

𝜖 ⋅෫𝑂𝑃𝑇

𝜖 ⋅෫𝑂𝑃𝑇

→ Through each grid point draw a line parallel to ℓ′′



→ Project each point onto closest line

→ ∀𝒑′ ∈ ℓ𝒊:
𝒅𝒊𝒔𝒕 𝒑′, ℓ = 𝝎 ⋅ 𝒅𝒊𝒔𝒕 𝒑′, 𝒄𝒊

ℓ

𝜖 ⋅෫𝑂𝑃𝑇

𝜖 ⋅෫𝑂𝑃𝑇

→ Compute a 𝟏-Center

coreset 𝑪𝒊 for each line ℓ𝒊! 

𝑪 = ራ𝑪𝒊

→ Through each grid point draw a line parallel to ℓ′′



Coreset for 𝑗-subspace in 𝑅𝑑

Claim 1:

Let 𝑆 be an 𝑟-dimensional subspace of 𝑅𝑑 and let 𝐿 be an 𝑟 + 𝑗 -dimensional 
subspace of 𝑅𝑑 that contains 𝑆. Let V be a 𝑗-dimensional subspace of 𝑅𝑑. Then 
there is an orthogonal matrix 𝑈 such that 𝑈𝑥 = 𝑥 for every 𝑥 ∈ 𝑆, and 𝑈𝑐 ∈ 𝐿 for 
every 𝑐 ∈ 𝑉.

Claim 2:

Let 𝐴 ∈ 𝑅𝑛×𝑑 be a matrix of rank 𝑟 and let 𝐿 be an 𝑟 + 𝑗 + 1 -dimensional 
subspace of 𝑅𝑑 that contains the row vectors 𝐴𝑖∗ for every 1 ≤ 𝑖 ≤ 𝑛. Then for 
evert affine 𝑗-dimensional subspace 𝑉 of 𝑅𝑑 there is a corresponding affine 𝑗-
dimensional subspace 𝑉′ ⊆ 𝐿 such that for every 𝑖 ∈ 𝑛 we have

𝑑𝑖𝑠𝑡 𝐴𝑖∗, 𝑉 = 𝑑𝑖𝑠𝑡 𝐴𝑖∗, 𝑉
′ .



Coreset for 𝑗-subspace in 𝑅𝑑

𝑆

𝑟 = 𝑗 = 1



Coreset for 𝑗-subspace in 𝑅𝑑

𝑆

𝑟 = 𝑗 = 1

𝐿

𝐿 contains 𝑆



Coreset for 𝑗-subspace in 𝑅𝑑

𝑆

𝑟 = 𝑗 = 1

𝑉
𝐿

𝐿 contains 𝑆



Coreset for 𝑗-subspace in 𝑅𝑑

𝑆

𝑟 = 𝑗 = 1

𝑉
𝐿

𝐿 contains 𝑆
𝑈



Coreset for 𝑗-subspace in 𝑅𝑑

𝑆

𝑟 = 𝑗 = 1

𝑉
𝐿

𝑈
𝐿 contains 𝑆

𝐿 contains 

𝑉𝑛𝑒𝑤 = {𝑈𝑐 ∣ 𝑐 ∈ 𝑉}



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct an affine 𝑗-subspace parallel to ℎ′.

#𝐽𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠 = O
2

𝜖

𝑑−𝑗
.



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct an affine 𝑗-subspace parallel to ℎ′.

#JSubspaces = O
2

𝜖

𝑑−𝑗
.

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest affine 𝑗-subspace ℎ𝑝.



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct an affine 𝑗-subspace parallel to ℎ′.

#JSubspaces = O
2

𝜖

𝑑−𝑗
.

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest affine 𝑗-subspace ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑗 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct an affine 𝑗-subspace parallel to ℎ′.

#JSubspaces = O
2

𝜖

𝑑−𝑗
.

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest affine 𝑗-subspace ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑗 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 

• 𝑃′ = 𝐻𝑝𝑝
′ 𝑝 ∈ 𝑃 .



Coreset for 𝑗-subspace in 𝑅𝑑

JSubspaceCoreset(𝑷, 𝒋):
• ℎ′ ← an 𝛼-approximation for the affine 𝑗-subspace center of 𝑃.

• ෫𝑂𝑃𝑇 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℎ′ .

• ℎ⊥ ←the affine 𝑑 − 𝑗-subspace that is orthogonal to ℎ′. 
• Construct a grid on ℎ⊥ whose cell length is 𝜖 ⋅෫𝑂𝑃𝑇. 

• Through each grid point construct an affine 𝑗-subspace parallel to ℎ′.

#JSubspaces = O
2

𝜖

𝑑−𝑗
.

• Compute the projection 𝑝′ of each point 𝑝 ∈ 𝑃 onto it’s closest affine 𝑗-subspace ℎ𝑝.

• 𝐻𝑝 ←an 𝑅𝑑×𝑗 matrix whose columns span ℎ𝑝 and 𝐻𝑝
𝑇𝐻𝑝 = 𝐼. 

• 𝑃′ = 𝐻𝑝𝑝
′ 𝑝 ∈ 𝑃 .

• Call 𝑯𝒚𝒑𝒆𝒓𝒑𝒍𝒂𝒏𝒆𝑪𝒐𝒓𝒆𝒔𝒆𝒕 𝑷′, 𝒋 .


