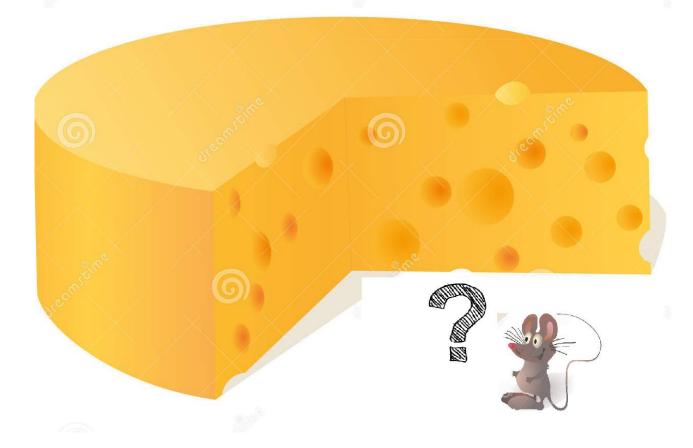
Big Data Class

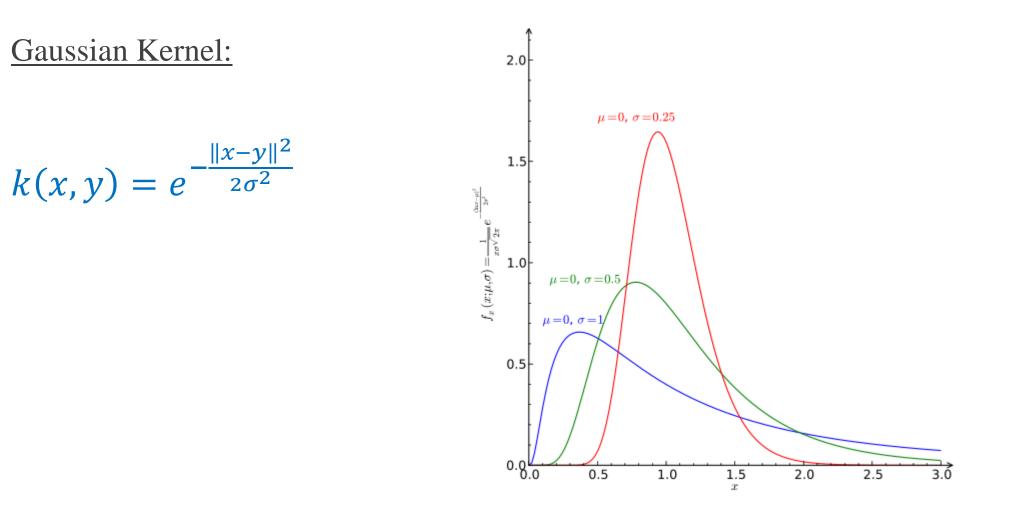


LECTURER: DAN FELDMAN TEACHING ASSISTANTS: IBRAHIM JUBRAN ALAA MAALOUF

אוניברסיטת חיפה University of Haifa جامعة حيفا

Department of Computer Science, University of Haifa.

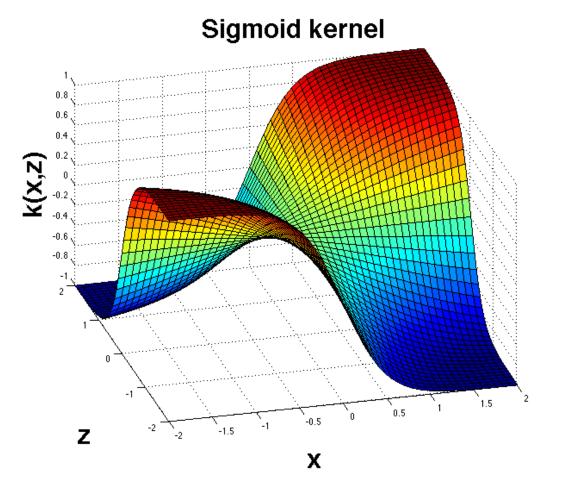
Example for Kernel Functions



Example for Kernel Functions

Sigmoid Kernel:

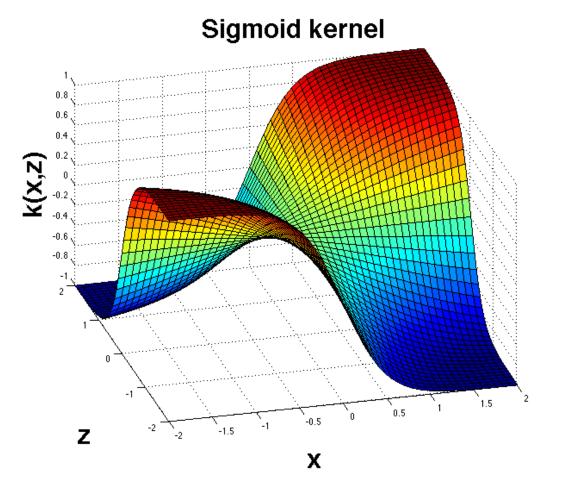
 $k(x, y) = \tanh(\alpha x^T y + c)$



Example for Kernel Functions

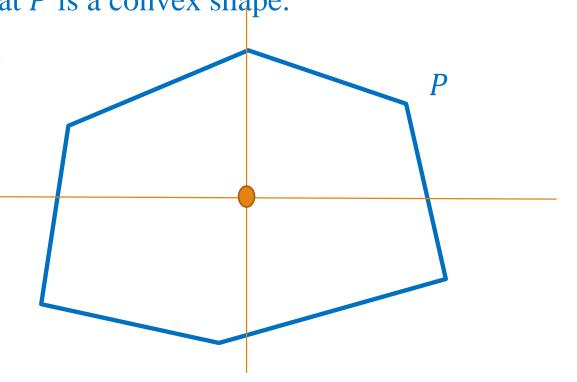
Sigmoid Kernel:

 $k(x, y) = \tanh(\alpha x^T y + c)$



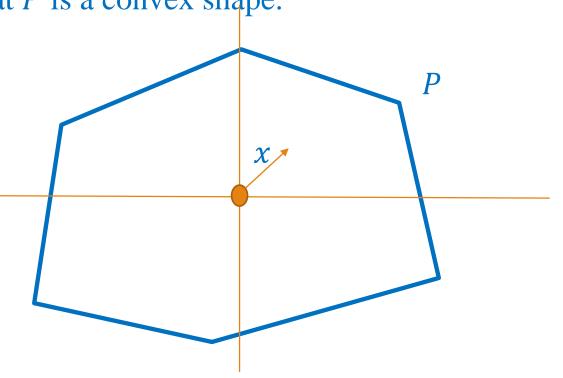
• <u>Input:</u> $P \subseteq R^d$, $|P| = n^d$ such that P is a convex shape.

• <u>Query space</u>: $Q = \{ x \in \mathbb{R}^d \mid ||x|| = 1 \}.$



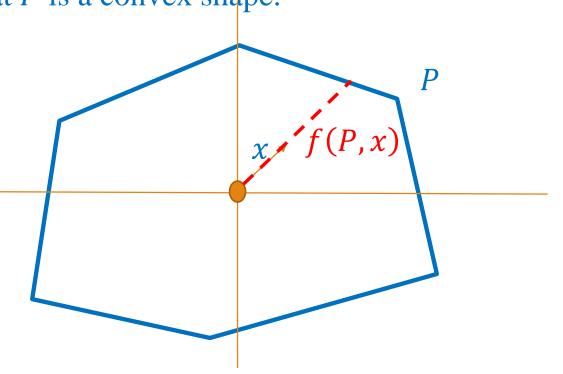
• <u>Input:</u> $P \subseteq R^d$, $|P| = n^d$ such that P is a convex shape.

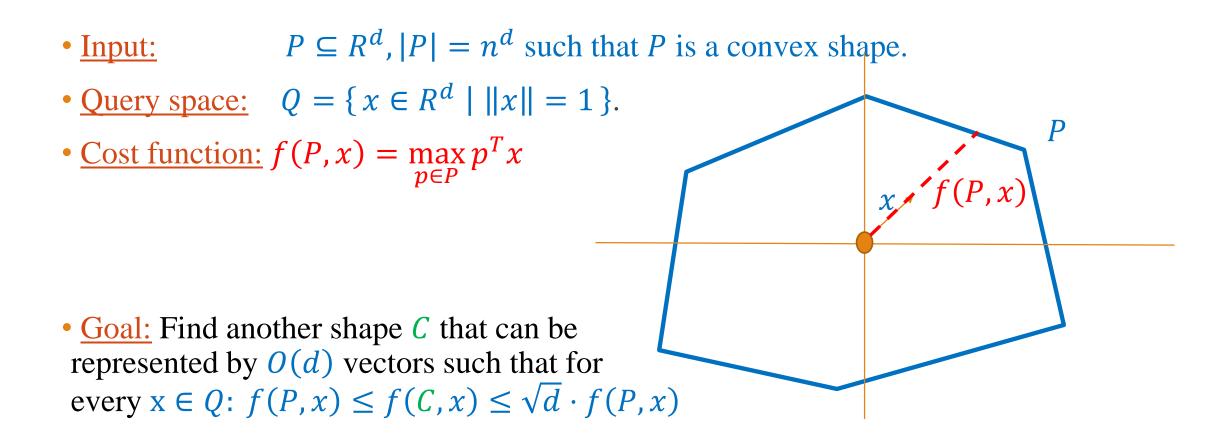
• <u>Query space</u>: $Q = \{ x \in \mathbb{R}^d \mid ||x|| = 1 \}.$



• <u>Input:</u> $P \subseteq R^d$, $|P| = n^d$ such that P is a convex shape.

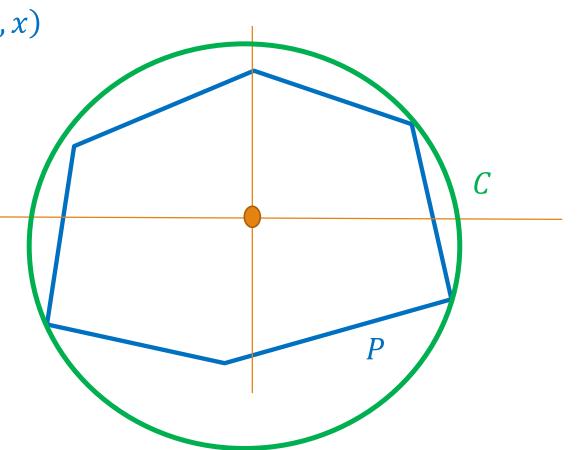
• <u>Query space</u>: $Q = \{ x \in \mathbb{R}^d \mid ||x|| = 1 \}.$





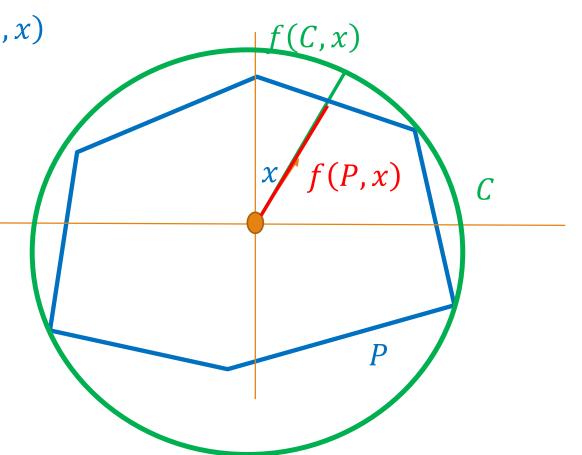
• <u>Goal</u>: Find another shape *C* that can be represented by O(d) vectors such that for every $x \in Q$: $f(P, x) \leq f(C, x) \leq \alpha \cdot f(P, x)$

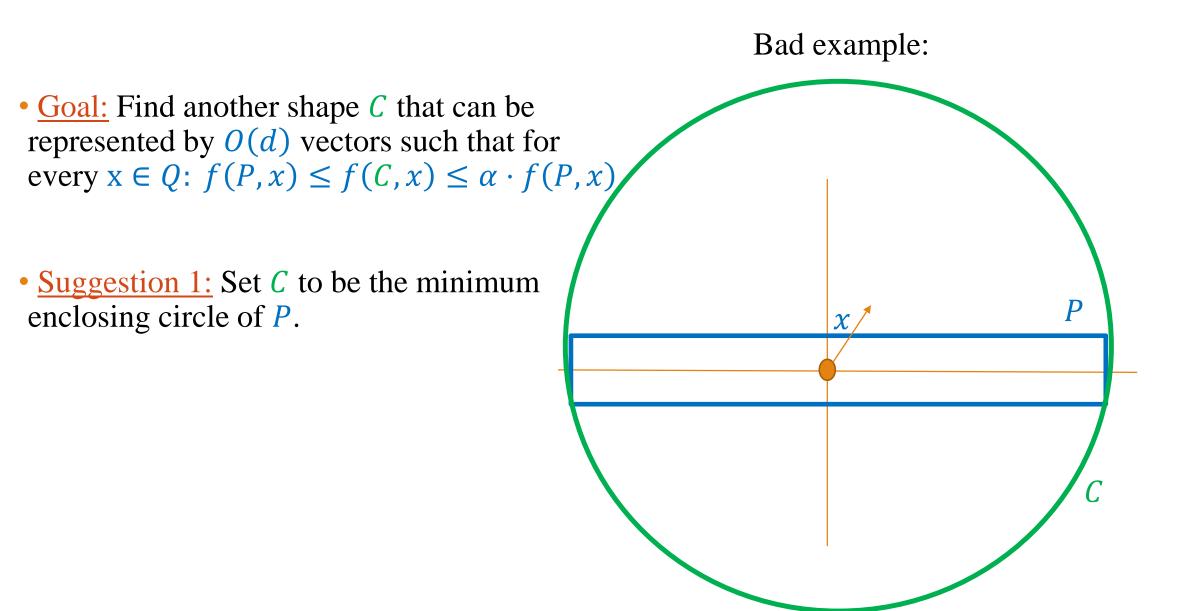
• <u>Suggestion 1:</u> Set *C* to be the minimum enclosing circle of *P*.

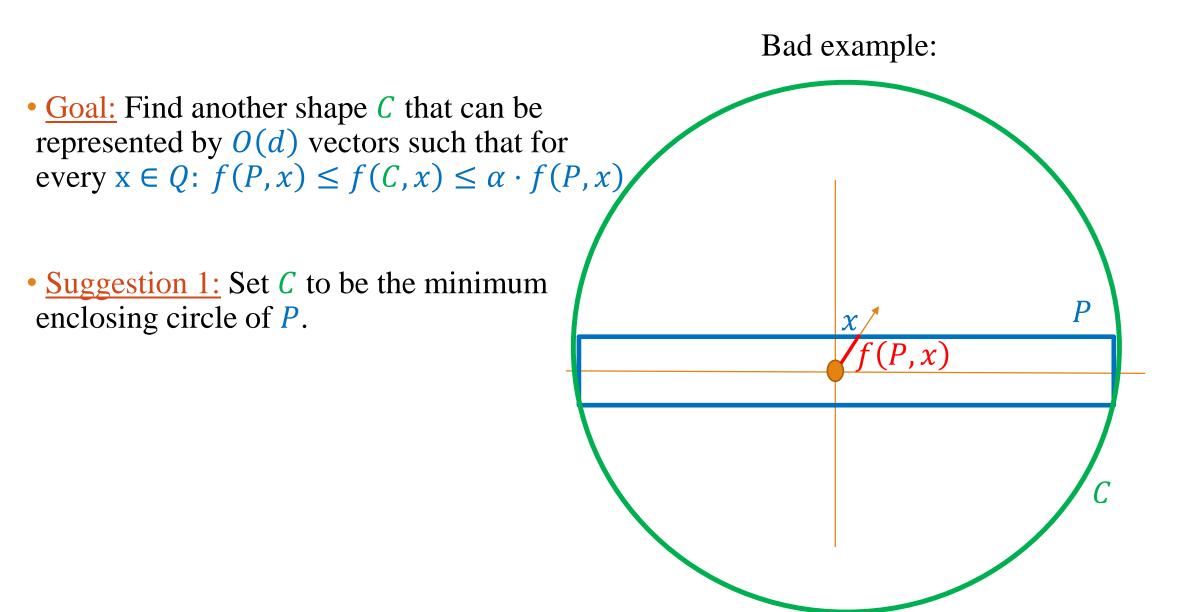


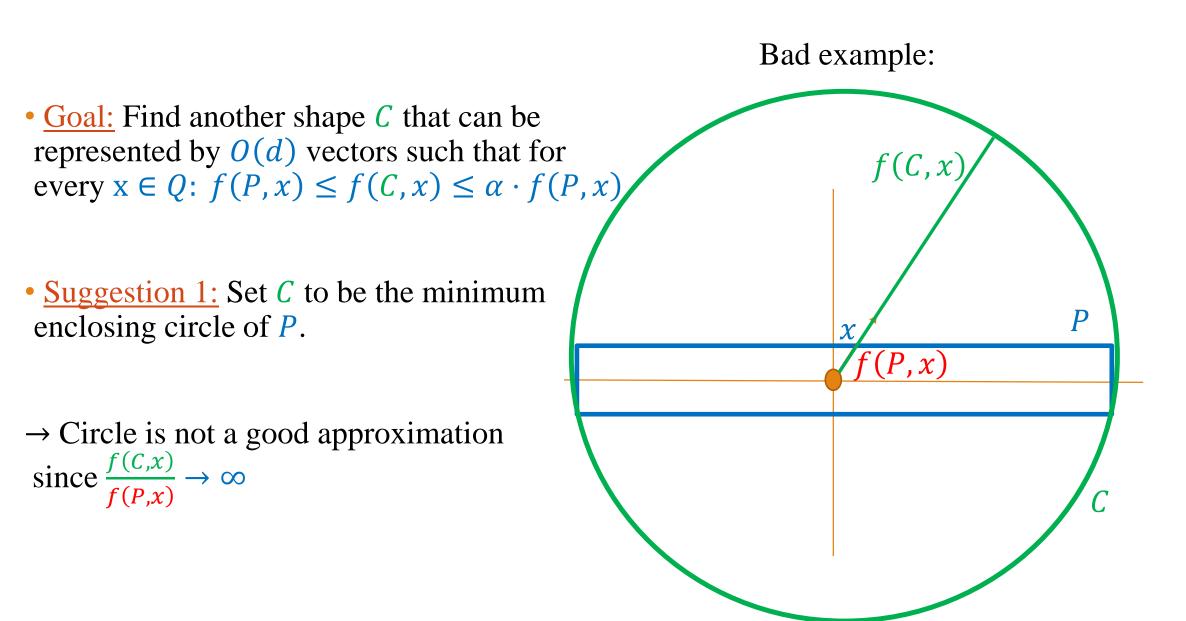
• <u>Goal</u>: Find another shape *C* that can be represented by O(d) vectors such that for every $x \in Q$: $f(P, x) \leq f(C, x) \leq \alpha \cdot f(P, x)$

• <u>Suggestion 1:</u> Set *C* to be the minimum enclosing circle of *P*.









• <u>Goal</u>: Find another shape *C* that can be represented by O(d) vectors such that for every $x \in Q$: $f(P, x) \leq f(C, x) \leq \alpha \cdot f(P, x)$

• <u>Suggestion 2:</u> Set *C* to be the minimum enclosing ellipsoid of *P*.

- <u>Goal</u>: Find another shape *C* that can be represented by O(d) vectors such that for every $x \in Q$: $f(P, x) \leq f(C, x) \leq \alpha \cdot f(P, x)$
- <u>Suggestion 2:</u> Set *C* to be the minimum enclosing ellipsoid of *P*.

Theorem: (John's Ellipsoid)

Every convex shape *P* contains an ellipsoid $\frac{E}{d}$ such that the ellipsoid *E* contains *P*.

Theorem: (John's Ellipsoid)

Every convex shape *P* contains an ellipsoid $\frac{E}{d}$ such that the ellipsoid *E* contains *P*.

→ For every $x \in Q$: $f(P,x) \le f(E,x) \le d \cdot f\left(\frac{E}{d}, x\right) \le d \cdot f(P,x)$

- <u>Input:</u> $P \in \mathbb{R}^{n \times d}$ such that P is a convex shape.
- <u>Query space</u>: $Q = \{ x \in \mathbb{R}^d \mid ||x|| = 1 \}.$
- Cost function: $k(p,x) = |px|, f(P,x) = \sum_{p \in P} k(p,x) = ||Px||_1$ $k(p,x) \sim g(|px|)$

- $P \in \mathbb{R}^{n \times d}$ such that P is a convex shape. • Input:
- <u>Query space</u>: $Q = \{ x \in \mathbb{R}^d \mid ||x|| = 1 \}.$
- <u>Cost function</u>: $k(p,x) = |px|, f(P,x) = \sum_{p \in P} k(p,x) = ||Px||_1$ $k(p, x) \sim q(|px|)$
- Notice that: $f(x) \sim ||Ex|| = ||DV^Tx||$

Lemma:

 $i \\ e_i = (0, \cdots, 0, 1, 0, \cdots, 0)$ The sensitivity of a point $p \in P$ is at most $\max_{x \in Q} \frac{k(p, x)}{f(P, x)} \le \sum_{i=1}^{d} k(p, E^{-1}e_i)$

Lemma:

The sensitivity of a point $p \in P$ is at most

$$\max_{x \in Q} \frac{k(p, x)}{f(P, x)} \le \sum_{i=1}^{a} k(p, E^{-1}e_i)$$

Proof:

$$\frac{1}{k(p,x)} \sim \frac{k(p,x)}{\|Ex\|} \sim k\left(p,\frac{x}{\|Ex\|}\right) = k(uE, E^{-1}, y) \sim g(\|uy\|) \le g(\|u\|_2)$$

$$\le g(\|u\|_1) = g\left(\sum_{i=1}^d |ue_i|\right) \sim \sum_{i=1}^d g(|ue_i|) \sim \sum_{i=1}^d k(uE, E^{-1}e_i)$$

$$= \sum_{i=1}^d k(p, E^{-1}e_i)$$

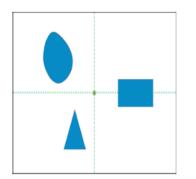
Lemma:

The sensitivity of a point $p \in P$ is at most

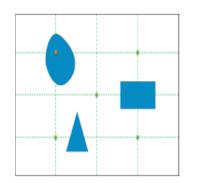
$$\max_{x \in Q} \frac{k(p, x)}{f(P, x)} \le \sum_{i=1}^{d} k(p, E^{-1}e_i)$$

Hence, the total sensitivity is:

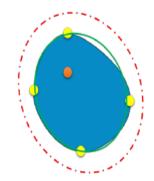
$$\sum_{p \in P} \sum_{i=1}^{d} k(p, E^{-1}e_i) = \sum_{i=1}^{d} \sum_{p \in P} k(p, E^{-1}e_i)$$
$$= \sum_{i=1}^{d} f(E^{-1}, e_i) \sim \sum_{i=1}^{d} ||E \cdot E^{-1}e_i|| \sim \sum_{i=1}^{d} ||e_i|| = d$$



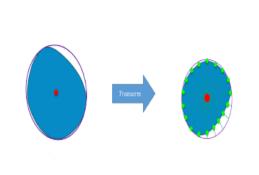
(a) Epsilon gridsampling; Firstiteration



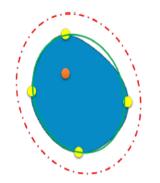
(b) Epsilon gridsampling; Sec-ond iteration



(c) d^{2d} approximation to John Ellipsoid



(d) Applying "Epsilon Star" on the transform space

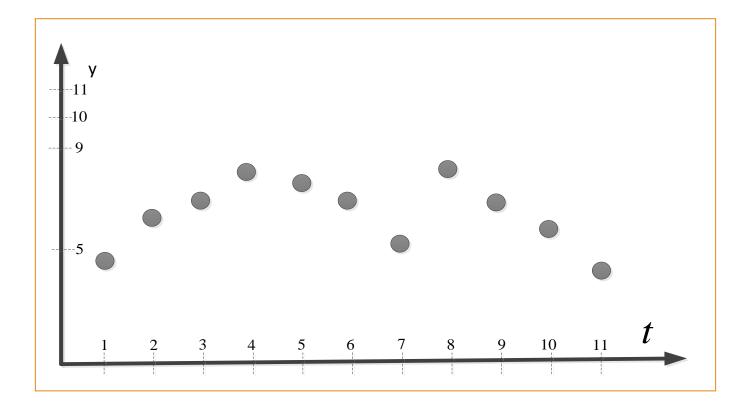


(e) $1 + \epsilon$ approximation to the real convex bodies

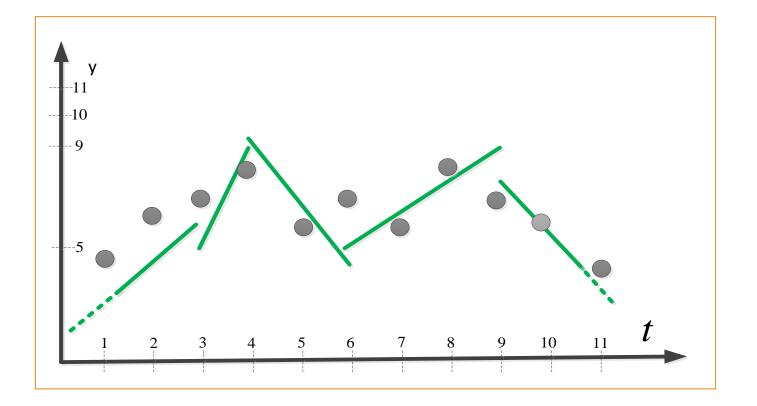
k-Segment mean

- <u>Input:</u> $P = \{(1, p_1), \dots, (1, p_n) \mid p_i \in \mathbb{R}^d\} \subseteq \mathbb{R}^{d+1}$
- <u>k-segment:</u> $f: R \to R^d$
- <u>Query space</u>: $Q = \{f \mid f \text{ is } a k segment\}\}$
- Cost function: $cost(P, f) = \sum_{i=1}^{n} ||p_i f(i)||_2^2$
- OPT = $\min_{f \in Q} cost(P, f)$
- k-segment mean $f^* = argmin_f cost(P, f)$

k-Segment mean

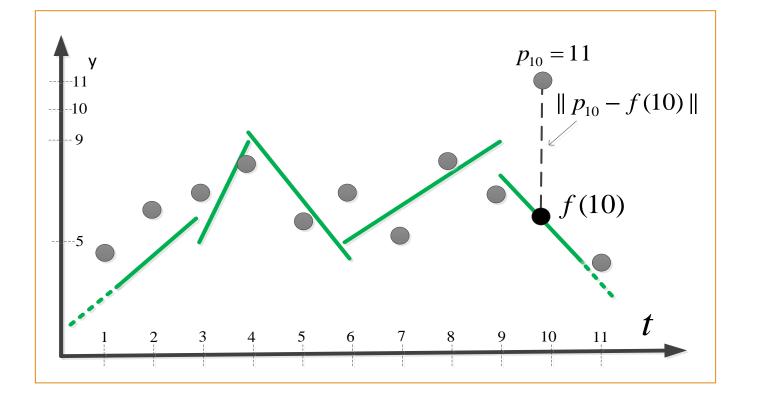


k-Segment mean



k-Segment mean

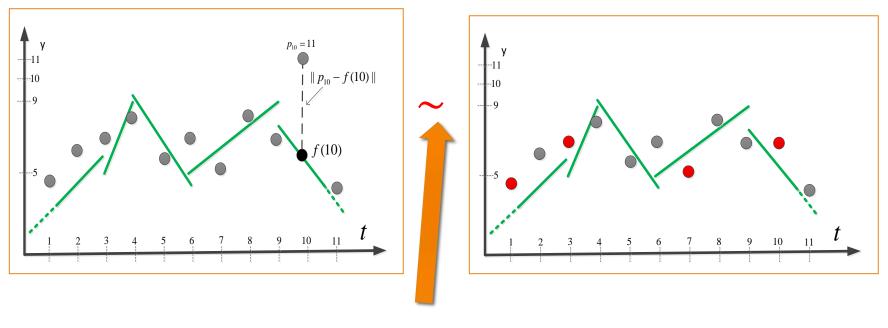
$$cost(P, f) = \sum_{i=1}^{n} ||p_i - f(i)||_2^2$$



- <u>Input:</u> $P = \{(1, p_1), \dots, (1, p_n) \mid p_i \in \mathbb{R}^d\} \subseteq \mathbb{R}^{d+1}$
- <u>k-segment:</u> $f: R \to R^d$
- <u>Query space</u>: $Q = \{f \mid f \text{ is } a k segment\}\}$
- Cost function: $cost(P, f) = \sum_{i=1}^{n} ||p_i f(i)||_2^2$
- <u>Output:</u> (C, ω) where $C \subseteq P$, $\omega: C \to R \ s.t. \ \forall f \in Q$:

$$\left|\sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot \|p_i - f(i)\|_2^2\right| \le \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$$

$$\left|\sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot \|p_i - f(i)\|_2^2\right| \le \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$$



 $(1 \pm \epsilon)$

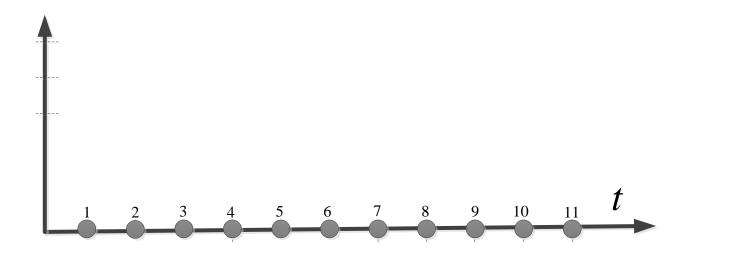
Theorem [Feldman, Langberg, STOC'11]

Let *P*, *Q* and *dist*: $PxQ \rightarrow R^+$. A sample $C \subseteq P$, from the distribution sensitivity(p) = $\max_{q \in Q} \frac{dist(p,q)}{\sum_{p \in P} dist(p,q)}$, is a coreset if $|C| \ge \frac{\text{dimension of } Q}{\epsilon^2} \cdot \sum_{e} \text{sensitivity}(p)$ $p \in P$

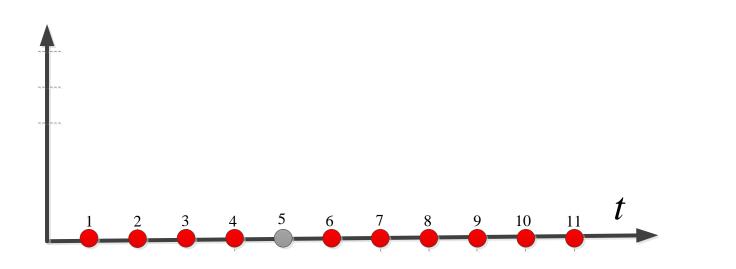
Observation:

No small coreset $C \subset P$ exists for *k*-segment queries

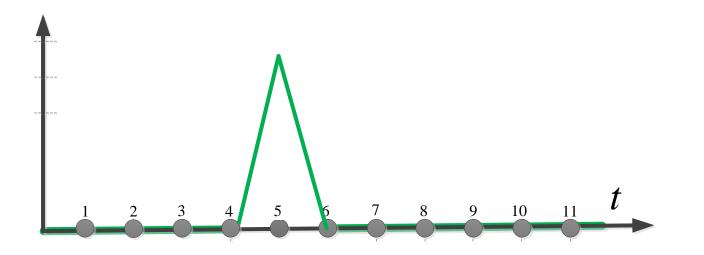
Input P: *n* points on the *x*-axis



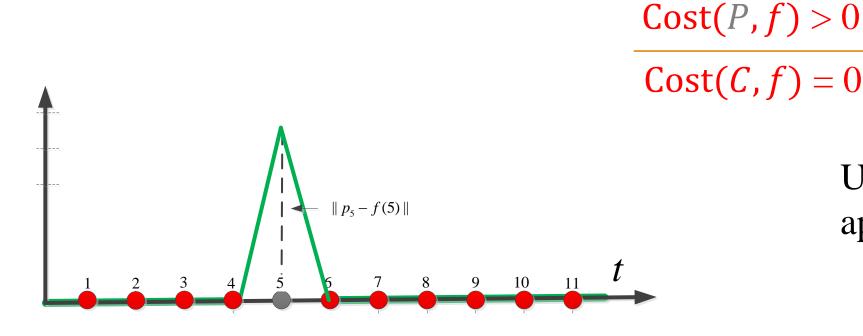
- Input P: *n* points on the *x*-axis
- Coreset C: all points except one



- Input P: *n* points on the *x*-axis
- Coreset C: all points except one
- Query f: covers all except this one



- Input P: *n* points on the *x*-axis
- Coreset C: all points except one
- Query f: covers all except this one



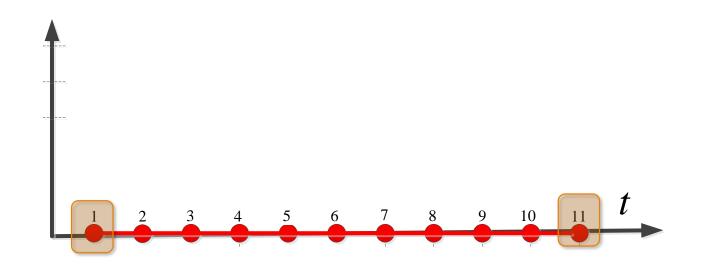
Unbounded factor approximation

$$\forall p \in P: sensitivity(p) = \max_{q \in Q} \frac{dist(p,q)}{\sum_{p \in P} dist(p,q)} = 1$$

\Rightarrow total sensitivity: n

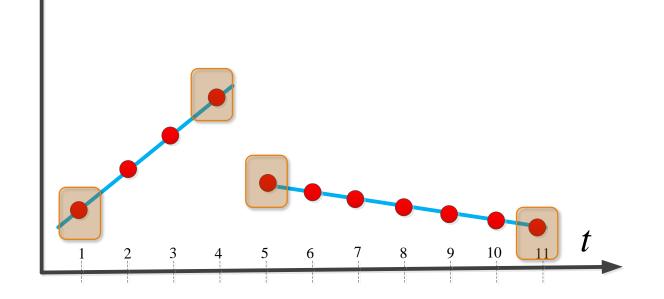
Observation:

Points on a segment can be stored by the two indexes of their end-points



Observation:

Points on a segment can be stored by the two indexes of their end-points and the slope of the segment.



Coreset for *k*-Segment mean (new definition)

- <u>Input:</u> $P = \{(1, p_1), \dots, (1, p_n) \mid p_i \in \mathbb{R}^d\} \subseteq \mathbb{R}^{d+1}$
- <u>k-segment:</u> $f: R \to R^d$
- <u>Query space</u>: $Q = \{\{f_1, \dots, f_k\} \mid f_i \text{ is a segment}\}\}$
- Cost function: $cost(P, f) = \sum_{i=1}^{n} ||p_i f(i)||_2^2$
- <u>Output:</u> (C, ω) where $C \times P$, $\omega: C \to R \ s.t. \ \forall f \in Q$:

$$\left|\sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot \|p_i - f(i)\|_2^2\right| \le \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$$

Input: (P, Q) and an (α, β) -approximation B. Let p' = proj(p, B). **Goal:** To compute a set (C, ω) such that for every $\forall f \in Q$: $\left| \sum_{p_i \in P} ||p_i - f(i)||_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot ||p_i - f(i)||_2^2 \right| \le \epsilon \cdot \sum_{p_i \in P} ||p_i - f(i)||_2^2$

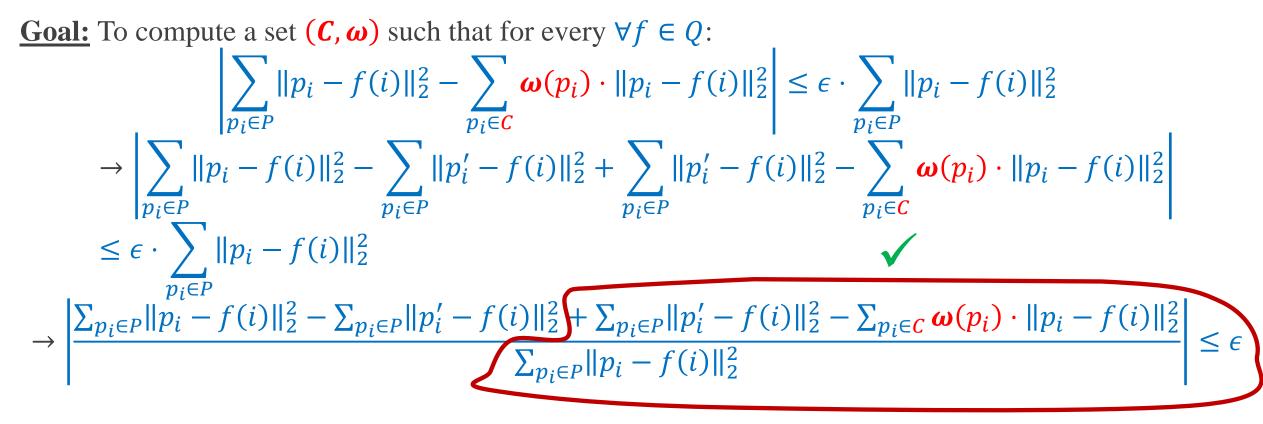
Input: (*P*, *Q*) and an (α , β)-approximation *B*. Let p' = proj(p, B).

Goal: To compute a set $(\mathcal{C}, \boldsymbol{\omega})$ such that for every $\forall f \in Q$: $\left| \sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in \mathcal{C}} \boldsymbol{\omega}(p_i) \cdot \|p_i - f(i)\|_2^2 \right| \leq \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$ $\rightarrow \left| \sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 + \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 - \sum_{p_i \in \mathcal{C}} \boldsymbol{\omega}(p_i) \cdot \|p_i - f(i)\|_2^2$ $\leq \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$

Input: (*P*, *Q*) and an (α , β)-approximation *B*. Let p' = proj(p, B).

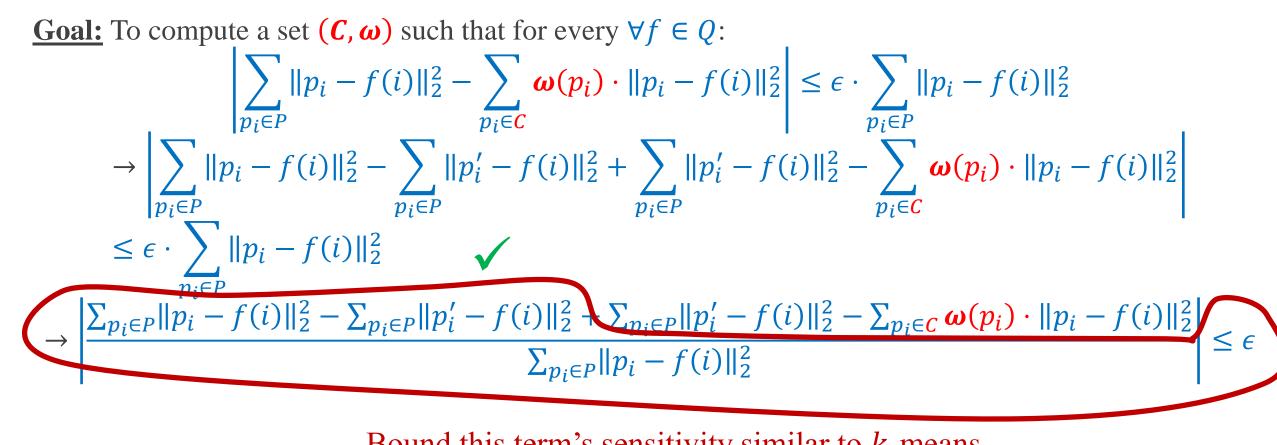
<u>Goal</u>: To compute a set (\mathcal{C}, ω) such that for every $\forall f \in Q$: $= \sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot \|p_i - f(i)\|_2^2 | \le \epsilon \cdot \sum_{p_i \in P} \|p_i - f(i)\|_2^2$ $\Rightarrow \left| \sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 + \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 - \sum_{p_i \in C} \omega(p_i) \cdot \|p_i - f(i)\|_2^2 \right|$ $\leq \epsilon \cdot \sum_{m \in D} \|p_i - f(i)\|_2^2$ $\rightarrow \left| \frac{\sum_{p_i \in P} \|p_i - f(i)\|_2^2 - \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 + \sum_{p_i \in P} \|p_i' - f(i)\|_2^2 - \sum_{p_i \in \mathcal{C}} \boldsymbol{\omega}(p_i) \cdot \|p_i - f(i)\|_2^2}{\sum_{p_i \in P} \|p_i - f(i)\|_2^2} \right| \le \epsilon$

Input: (*P*, *Q*) and an (α , β)-approximation *B*. Let p' = proj(p, B).



Add the projections to the coreset C

Input: (*P*, *Q*) and an (α , β)-approximation *B*. Let p' = proj(p, B).



Bound this term's sensitivity similar to *k*-means

Theorem [Feldman, Sung, Rus, GIS'12]

For every discrete signal of *n* points in \mathbb{R}^d , there is a coreset of space $O\left(\frac{k}{\epsilon^2}\right)$ that can be computed in the big data model.