Core-sets for Nano-Drones or: M

The Fall and Rise of Computational Geometry M9°MN NV OIVNR
University of Haifa

Based on NIPS’19 Papers:
with Y. Marom,
with A. Malouf & I. Jubran (+Oral)

I'/ Army develops new drone-killing technology
(6 hours ago)

Drone protests threaten UK's Heathrow Airport with more flight chaos
(10 hours ago)

I“l* ”l'l I mm IDF drone crashes in Gaza; Palestinians claim they shot it down

(15 hours ago)

THE IDF DENIES HEZBOLLAH SHOT DOWN
_]ERUSALEM POST SURVEILLANCE DRONE

(25 hours ago)

H u u STU N*c H R D N I c I. E Gas cloud imaging, drones to monitor methane emissions
(30 hours ago)

..* REUTERS Syrian army foils drone attack on military base in northwest
(40 hours ago)

But where are the Nano-drones?

Main Challenge: Autonomous Navigation
- No GPS for indoor navigation
- Law =2 Low:
B e weight—> payload—>
Guiding Drone computation power
(MIT Senseable - Real real-time computations
City Lab, 2013) . _ _
- Big data with respect to time

:l ‘ Strong algorithms for weak hardware

&

Wearable Drone (Intel, 2015)

Autonomous Navigation

Amnon Shashua: April 23, 2019, MIT Reviews, by Karen Hao

- Problem: “three-orders-of-magnitude gap”

- Hardware: “create redundancies...using radar & lidar”
- Data: Make “highly detailed map”

Maybe we just need better software (algorithms)?

- The words “proof” and “theorem” are very rare in Computer Vision top
conferences/books/classes

- The less we understand the more it works (e.g. deep learning)

Localization (Perspective-n-Points)

Input:

- A set of points P = {p4, ..., p,,}
-Asetoflines L ={¢,..,¢,}

- e 4
" ” \J
i

Image
Cn

;‘. plane

Camera

Localization (Perspective-n-Points)

Input:

- A set of points P = {p4, ..., 0, }
-Asetoflines L ={¢,..,¢,}

Output:

7’ &
X e

“‘
Camera

An alignment rotation+translation

(R,t) that minimizes ~

z diStZ (Rpl — T, ’El)

i€[n]

&
Camera

2D case: Navigation at night

rlmm PhD Thesis, MIT:

1 On Geometric and Algebraic Aspects of 3D Affine and Projective
‘ Structures from Perspective 2D Views

Amnon Shashua

What went wrong?

Good news: PnP can be solved exactly (global optimum) in O(n) time
Easy reduction in 1 second forn = 1,000,000 and a laptop to:
Minimize ||Ax + By + Cz|| over mutually orthogonal x, v, z where A, B, C € R3*3

How much time in practice to solve this O(1) sized problem?

o4 '“!Im PhD Thesis, MIT:

" On Geometric and Algebraic Aspects of 3D Affine and Projective
Structures from Perspective 2D Views

Amnon Shashua

What went wrong?

Good news: PnP can be solved exactly (global optimum) in O(n) time

- Easy reduction in 1 second forn = 1,000,000 and a laptop to:

Minimize ||Ax + By + Cz|| over mutually orthogonal x, v, z where 4, B, C € R3*3
How much time in practice to solve this O(1) sized problem?

- Bad news: Via Mathematica & Maple - still running after 1 Month.

- =» Exact non-convex optimization is hard

- even for low degree polynomial of 3-variables and quadratic constraints

- NMinimize or other heuristics — a second but x1000 worse single local optimum

- Suggested approach: Coreset + Provable APPROXIMATIONS

Theorem [Jubran] (MSc thesis) :

There is a subset of O(1) points such that
solving the PnP on this set would give exact
solution to the PnP of the original data.

Theorem [Malouf & Jubran] (NIPS’19, Oral) : This
set can be computed in O(n) time.
Point insertion takes O(1) time.

10

Motivation

“Cormen” usually not support:
- Big Data
- Streaming real-time data
= - Distributed data
=& _ Real time computations

Limited hardware & energy
- Smart, loT, GPU, Cars
- 1Robots, drones, cars

Common solution
- New optimization algorithms

Less:
CPU Time
Dev. Time
Memory
Energy
Comm.

$$9, ...

Computational Geometry
e-nets, Caratheodory, MVEE
F, Sharir, Fiat, Langberg, ...
[STOC'11, FOCS'06, SoCG'14/07]

Compressed Se

Graph Theory

Sketches Spa r5|lt|eBrs,rPrlcr)pRerty Testing
F, Woodruf, Sohler, ... [|C’|\/|i'f;e ,SDlIJ\jI,'i-é]
[SODA’10] ,

~

Matrix Approximation CO reset
SVD/PCA, Random Pro;j. Resea rCh

F, Sohler, Tassa,...
[SODA’13, KDD’15]

Computer Vision
RANSAC++
F, Rus, Sochen, ...
[ICRA’15, JMIV’15, IROS’12]

Robotics
RRT++ sampling

F, Nasser, Jubran, ...
[IPSN’12/15/17, ICRA’13/14/15]

Statistics

Importance Sampling, Suff. Stat
F, Shulman, Sung, Rus, ...
[SODA’12, SenSys’13, GIS'12]

Machine Learning
PAC/Active learning

F, Krause, J. W. Fisher,...
[JMLR’17, NIPS’16/14/11]

Example Coresets

= Deep Learning

— Training [submitted]

— Model compression [ICLR"19]
" Machine Learning

Mixture of Gaussians [JMLR'18
Clustering [SDM’16

Matrix Factorization [KDD15, NIPS16]
Segmentation |[NIPS'14

= Real-time Robotics & Computer Vision

Swarm of Drones [ICRA’19]
Shape fitting [RA-Letters 18]

Autonomous cars [IPSN‘17]
Localization |[ICRA’15, IROS'14

Our RBD Lab’s Generations:

Expensive external tracking cameras
+ Huge drone + Laptop

Huge Drone—> Nano-drone
Expensive = web cameras

Single drone = swarm

Web cams—> on-board camera
Unknown Model

Current research: all on board

=>» Swarm is easy

OptiTrack’s premium motion capture camera. With 4.1 M
tracking range, and 51° field of view, the Prime 41 is idea
production mocap with impeccable fidelty

Z % \ <N N ./ﬁ
d & e N
"\‘i . ..-u "\
- & N Y

-
/ P = ‘.r~ 14 % 140

Mapping (Triangulation = 1-mean for 2 lines)

p € min dist(q,¥,) + dist(q,?,)
g€ER3

Mapping (1-mean for 3 lines)

What point minimizes the sum of distances to a given 3 lines?
- Non-convex, Non-linear, no nothing

Mapping (k-mean for n lines)

Compute k points (on drone) that minimize the sum of distances
to n input lines

2-Factor Approximation

- Compute the closest point to each pair of the n lines
- k of them are 2-approx.

- Time too long: O(nk)

Coreset for k-means of lines

Input: A set L of n lines in R% ,number of means k > 1

and coreset-size m = 1.
Output: A set of lines C = {cq, ..., ¢} € L and a set of corresponding
weights u = {uy, ..., U, } € RT, such that for every set P € R% of k

points,

z u; - dist(c;, P) € (1 + €) - z dist(e,P).

1<i<m LEL

N N/

—>

N / N

Theorem [with Y. Marom, NIPS'19]

log(n)

Every set of n lines has such a coreset of size ~ ;

- It can be compute in O(n log n) time
- Point insertion in ~ log n time/memory (streaming)

- Parallel time reduced by a factor of M
using M machines (GPU, cloud, threads)

(a, B)-Approximation for k lines means

Algorithm:
(1) Pick a sample S of m = 4 a—

lines. N

(2) Compute G the k- ‘
meanss of S. ’

(3) Remove half of the N
closest lines to G. /

(4) Return to (1) p

Algorithm:
(1) Pick a sample S of m =
4 lines.

(2) Compute G the k-means
of §.

(3) Remove half of the

closest linesto G.
(4) Return to (1)

Algorithm:

(1) Pick a sample S of m =
4 lines.

(2) Compute G the k-
meanss of S.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

Algorithm:

(1) Pick a sample S of m = 4
lines.

(2) Compute G the k-
meanss of S.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

Algorithm:

(1) Pick a sample S of m = 4
lines.

(2) Compute G the k-means
of §.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m = 4
lines.

(2) Compute G the k-means
of §.

(3) Remove half of the
closest linesto G.
(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:
(1) Pick a sample S of m

[——]
= 4 lines. NV 2
(2) Compute G the k-means ‘
of S.

(3) Remove half of the e N

closest lines to G. <7

(4) Return to (1) \
JZaN

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m =
4 lines.

(2) Compute G the k-means
of §.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m

= 4 |ines.

(2) Compute G the k-means
of §S.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:
(1) Pick a sample S of m =
4 lines.

(2) Compute G the k-means
of S.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:
(1) Pick a sample S of m =

4 lines.

(2) Compute G the k-means
of §.

(3) Remove half of the

closest linesto G.
(4) Return to (1)

S

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m

= 4 lines.

(2) Compute G the k-means
of §.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m

= 4 |ines.

(2) Compute G the k-means
of §.

(3) Remove half of the
closest lines to G.

(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:
(1) Pick a sample S of m
= 4 |ines.

(2) Compute G the k-means
of §.

\/\
(3) Remove half of the
closest lines to G.
(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m =
4 lines. _

(2) Compute G the k-means
of §.

(3) Remove half of the
closest lines to G.
(4) Return to (1)

(a, B)-Approximation for k lines means — Bicriteria

Algorithm:

(1) Pick a sample S of m

= 4 lines.
(2) Compute G the k-means

of S. _—

(3) Remove half of the
closest lines to G.
(4) Return to (1)

-

(a, B)-Approximation for k lines means — Bicriteria

Eventually, we get k|logn|
= 9 points

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B = (a, f)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B = (a, f)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(¢,b)
S(g) - Z{’IEL dl'St(f” B) * ZSb (f)
(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(¢,b)
S(g) - Z{’IEL dl'St(f” B) * ZSb (f)
(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(¢,b)
S(g) - Z{’IEL dl'St(f” B) * ZSb (f)
(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(¢,b)
S(g) - Z{’IEL dl'St(f” B) * ZSb (f)
(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£):
i. Let ¢ bethe parallel lineto ¢

that intersect b (the projection
of £ onto b).
ii. SetS tobe the unit sphere that

is centered at b.

iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.

iv. SetQ ={p({')I|Le€eL}

v. Setu = Weighted — Centers
— Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.
(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£):
i. Let ¢ bethe parallel lineto ¢
that intersect b (the projection
of £ onto b).
ii. SetS tobe the unit sphere that
is centered at b.
iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.
iv. SetQ ={p({')I|Le€eL}
v. Setu = Weighted — Centers
— Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.
(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£):
i. Let ¢ bethe parallel lineto ¢
that intersect b (the projection
of £ onto b).
ii. SetS tobe the unit sphere that
is centered at b.
iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.
iv. SetQ ={p({')I|Le€eL}
v. Setu = Weighted — Centers —
Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation

for the k-means of L.

(2) Cluster each # € L to its closest

b € B and compute its partial

sensitivity s, (£):

i. Let ' bethe parallel lineto ¢
that intersect b (the projection
of £ onto b). PN

ii. SetS tobe the unit sphere that
is centered at b.

iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.

iv. SetQ ={p({')I|Le€eL}

v. Setu = Weighted — Centers
— Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means

Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each £ € L to its closest
b € B and compute its partial
sensitivity s, (£):

Vi.

Let £’ be the parallel line to £
that intersect b (the projection
of £ onto b).

Set § to be the unit sphere that
is centered at b.

Set p(£') = an arbitrary point in
the pair#' N S.
SetQ:={p(¥')|¥€L}

Set u :== Weighted — Centers

— Sensitivity (Q, 2k)

Set s, (¥) = u(p(#’))

B
///

V

S
A—

\\

Coreset for k lines means

Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each £ € L to its closest
b € B and compute its partial
sensitivity s, (£):

Vi.

Let £’ be the parallel line to £
that intersect b (the projection
of £ onto b).

Set § to be the unit sphere that
is centered at b.

Set p(¥") = an arbitrary point in
the pair£' N S.
SetQ:={p(¥')|¥€L}

Set u :== Weighted — Centers

— Sensitivity (Q, 2k)

Set s, (¥) = u(p(#’))

IR

P

/\//
/- //

V

S
A—

\\

Coreset for k lines means

Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each £ € L to its closest
b € B and compute its partial
sensitivity s, (£):

Vi.

Let £’ be the parallel line to £
that intersect b (the projection
of £ onto b).

Set § to be the unit sphere that
is centered at b.

Set p(¥") = an arbitrary point in
the pair£' N S.
SetQ:={p(¥')|¥€L}

Set u :== Weighted — Centers —
Sensitivity (Q, 2k)

Set s, (¥) = u(p(f’))

A

/-

//

A

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.
(2) Cluster each € € L to its closest

b € B and compute its partial /
sensitivity s;, (£): \

i. Let £’ be the parallel line to £
that intersect b (the projection \ I
of £ onto b). e
ii. SetS to be the unit sphere that - \
is centered at b. /
iii. Setp(¥") :=an arbitrary pointin
the pair#' N S. //
v. Setu = Weighted — Centers
— Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.
(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£):
i. Let ¢ bethe parallel lineto ¢
that intersect b (the projection
of £ onto b).
ii. SetS tobe the unit sphere that
is centered at b.
iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.

v. Setu = Weighted — Centers
— Sensitivity (Q, 2k)

vi. Sets, () = u(p(¢))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.
(2) Cluster each # € L to its closest
b € B and compute its partial
sensitivity s, (£):
i. Let ¢ bethe parallel lineto ¢
that intersect b (the projection
of £ onto b).
ii. SetS tobe the unit sphere that
is centered at b.
iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.
iv. SetQ ={p({')I|Le€eL}
v. Setu := Weighted — Centers
— Sensitivity(Q, 2k)

vi. Setsp(#) =u(p(?))

Coreset for k lines means

Algorithm:

(1)
(2)

Compute B := (a, 8)-approximation

for the k-means of L.

Cluster each € € L to its closest

b € B and compute its partial

sensitivity s, (£):

i. Let ¢ bethe parallel lineto ¢
that intersect b (the projection
of £ onto b). I

ii. SetS tobe the unit sphere that
is centered at b.

iii. Setp(¥") :=an arbitrary pointin
the pair#' N S.

iv. SetQ ={p({')I|Le€eL}

v. Setu := Weighted — Centers —
Sensitivity(Q, 2k)

vi. Setsp(#) =u(p(?))

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(¢,b)
(4) Forevery line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point

b € B, compute final sensitivity /
dist(€,b)
(4) Forevery line £ € L, define

_ s®
prob(¥) = S s
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ 5@
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ 5@
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) Forevery £ € S define

1
w0 = isiorobey

(7) Return (S, w).

Coreset for k lines means
Algorithm:

(1) Compute B := (a, 8)-approximation
for the k-means of L.

(2) Cluster each € € L to its closest
b € B and compute its partial
sensitivity s, (£).

(3) Forevery ¥ € L and its closest point
b € B, compute final sensitivity

_ dist(¢,b)
s =5t 5y T 25D

(4) For every line £ € L, define

_ s
prob(¥) = L
(5) Pick a sample S consist of at least m
lines from L with probability prob(¥).

(6) For every £ € S define

1
W = Sprancey

(7) Return (S, u).

Thank you and the RBD students!

60 Undergraduates 25 Graduates

Community
Infrastructures & Companies Papers/Thesis

63 N9°N OO0 NINR
University of Haifa

Localization Using Sky Patterns

Input: (Left) A set P = {py, ..., pn} of observe
stars of Ursa Major. (Top right) Approximation
of the known model of Ursa Major by a set
L={¢4,..,%,}of lines.

Output: (Bottom right) Rotation and Translation
(R, t) that minimize ¥;ep, dist(Rp; —t,¢;).

From Big Data to Small Data

Suppose that we can compute such a corset C of size

1 .

. for every set P of n points
e intimen>,
e off-line, non-parallel, non-streaming algorithm

: \\
: <
!

A
y
41
—t10
Lo
@
[J [J [) [J
@
@
L5 ® [J
@
)
'f ‘\
L d
L
L
il 1 2 3 4 s 6 7 8 9 10 11 4

L2 . .
Read the first - streaming points and reduce them

5
L] L] L] L] L] 2
into — weighted points in time (—)

€ €

1 + € corset for P4

e

2 . :
Read the next - streaming point and reduce them

5
L] L] L] L] L] 2
into — weighted points in time (—)

€ €

1 + e corset for P, 1+ € corset for P,

ﬂ _ v /

Merge the pair of e-coresets into an e-corset

of % weighted points

1 + e-corset for P; U P,

| //2&//

/} _ v /

Delete the pair of original coresets from memory

1 + e-corset for P; U P,

2 . 1
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,

2 . 1
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,

=(1 + €)?-corset for P; U P,

(1 + €)*-corset for P, U P,

Vi
/ A
(1 + €)-corset for P,

;“““;““;\;\;\;\“u“;” /

(1 + €)*-corset for P; U P,

X T

(1 + €)-corset for P; (1 + €)-corset for P,

(1 + €)*-corset for P; U P, (1 + €)-corset for P; U P,

/ / f\/

-

—_
—

(1 + €)*-corset for P; U P, (1 + €)*-corset for P; U P,

-

/o ~

—

(1 + €)?-coreset for

P,UP,UP;UP,

(1 + €)3-coreset for

P,UP,UP;UP,

Size of Storage (# of doubles)

]O F T T T T T
' Coreset
Entire Input
10°F |
10°F :
10t B
10°F i
500 10 10 10° 10° 2,688,000

Size of Input

Parallel Computation

h

Parallel Computation

Parallel Computation

Run off-line
algorithm
on corset

using single = ‘/ﬂﬂﬁ

computer

Parallel+ Streaming Computation

L

83

