
Dan Feldman & the

Core-sets for Nano-Drones or:
The Fall and Rise of Computational Geometry

Robotics & Big Data Lab

1

Based on NIPS’19 Papers:
with Y. Marom,
with A. Malouf & I. Jubran (+Oral)

Syrian army foils drone attack on military base in northwest
(40 hours ago)

Army develops new drone-killing technology
(6 hours ago)

Drone protests threaten UK's Heathrow Airport with more flight chaos
(10 hours ago)

IDF drone crashes in Gaza; Palestinians claim they shot it down
(15 hours ago)

IDF DENIES HEZBOLLAH SHOT DOWN
SURVEILLANCE DRONE
(25 hours ago)

Gas cloud imaging, drones to monitor methane emissions
(30 hours ago)

3

But where are the Nano-drones?

Guiding Drone
(MIT Senseable
City Lab, 2013)

Wearable Drone (Intel, 2015)

Main Challenge: Autonomous Navigation
- No GPS for indoor navigation
- Law à Low:

weightà payloadà
computation power

- Real real-time computations
- Big data with respect to time

Strong algorithms for weak hardware

4

Autonomous Navigation

Amnon Shashua:
- Problem: “three-orders-of-magnitude gap”
- Hardware: “create redundancies…using radar & lidar”
- Data: Make “highly detailed map”

April 23, 2019, MIT Reviews, by Karen Hao

Maybe we just need better software (algorithms)?
- The words “proof” and “theorem” are very rare in Computer Vision top

conferences/books/classes
- The less we understand the more it works (e.g. deep learning)

Input:

- A set of points 𝑃 = 𝑝$,… , 𝑝'
- A set of lines 𝐿 = ℓ$,… , ℓ'

Localization (Perspective-n-Points)

Output:

Input:

- A set of points 𝑃 = 𝑝$,… , 𝑝'
- A set of lines 𝐿 = ℓ$,… , ℓ'

An alignment rotation+translation
𝑅, 𝑡 that	minimizes

6
7∈ '

dist: 𝑅𝑝7 − 𝑡, ℓ7

Localization (Perspective-n-Points)

2D case: Navigation at night

𝑅, 𝑡

8

PhD Thesis, MIT:

What went wrong?
Good news: PnP can be solved exactly (global optimum) in O(n) time

Easy reduction in 1 second for 𝑛 = 1,000,000 and a laptop to:

Minimize ||𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧|| over mutually orthogonal 𝑥, 𝑦, 𝑧 where 𝐴, 𝐵, 𝐶 ∈ ℝH×H

How much time in practice to solve this O(1) sized problem?

9

PhD Thesis, MIT:

What went wrong?
Good news: PnP can be solved exactly (global optimum) in O(n) time

- Easy reduction in 1 second for 𝑛 = 1,000,000 and a laptop to:

Minimize ||𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧|| over mutually orthogonal 𝑥, 𝑦, 𝑧 where 𝐴, 𝐵, 𝐶 ∈ ℝH×H

How much time in practice to solve this O(1) sized problem?

- Bad news: Via Mathematica & Maple - still running after 1 Month.
- è Exact non-convex optimization is hard
- even for low degree polynomial of 3-variables and quadratic constraints
- NMinimize or other heuristics – a second but x1000 worse single local optimum

- Suggested approach: Coreset + Provable APPROXIMATIONS

10

Theorem [Jubran] (MSc thesis) :
There is a subset of 𝑂 1 points such that
solving the PnP on this set would give exact
solution to the PnP of the original data.

Theorem [Malouf & Jubran] (NIPS’19, Oral) : This
set can be computed in 𝑂(𝑛) time.
Point insertion takes 𝑂 1 time.

Motivation
“Cormen” usually not support:
- Big Data
- Streaming real-time data
- Distributed data
- Real time computations

Limited hardware & energy
- Smart, IoT, GPU, Cars
- iRobots, drones, cars

Common solution
- New optimization algorithms

Focus on optimization summarization

f() f()

Less:
CPU Time
Dev. Time
Memory
Energy
Comm.
$$$, …

Coreset
Research

Computational Geometry
𝜖-nets, Caratheodory, MVEE
F, Sharir, Fiat, Langberg, …

[STOC'11, FOCS'06, SoCG'14/07]

Compressed Sensing
Sketches

F, Woodruf, Sohler, …
[SODA’10]

Computer Vision
𝑅𝐴𝑁𝑆𝐴𝐶++

F, Rus, Sochen, …
[ICRA’15, JMIV’15, IROS’12]

Matrix Approximation
SVD/PCA, Random Proj.

F, Sohler, Tassa,…
[SODA’13, KDD’15]

Robotics
𝑅𝑅𝑇++ sampling

F, Nasser, Jubran, …
[IPSN’12/15/17, ICRA’13/14/15]

Statistics
Importance Sampling, Suff. Stat

F, Shulman, Sung, Rus, …
[SODA’12, SenSys’13, GIS’12] Machine Learning

PAC/Active learning
F, Krause, J. W. Fisher,…

[JMLR’17, NIPS’16/14/11]

Graph Theory
Sparsifiers, Property Testing

F, Barger, Rus, …
[ICML’17, SDM’16]

Example Coresets
§ Deep Learning

– Training [submitted]
– Model compression [ICLR’19]

§ Machine Learning
§ Mixture of Gaussians [JMLR’18]
§ Clustering [SDM’16]
§ Matrix Factorization [KDD15, NIPS16]
§ Segmentation [NIPS’14]

§ Real-time Robotics & Computer Vision
§ Swarm of Drones [ICRA’19]
§ Shape fitting [RA-Letters 18]
§ Autonomous cars [IPSN‘17]
§ Localization [ICRA’15, IROS’14]

15

• Expensive external tracking cameras
+ Huge drone + Laptop

• Huge Droneà Nano-drone
• Expensive à web cameras
• Single drone à swarm
• Web camsà on-board camera
• Unknown Model
• Current research: all on board
• è Swarm is easy

Our RBD Lab’s Generations:

ℓ$

ℓ:

𝑝 ∈ min
Q∈ℝR

𝑑𝑖𝑠𝑡 𝑞, ℓ$ + 𝑑𝑖𝑠𝑡 𝑞, ℓ:

Mapping (Triangulation = 1-mean for 2 lines)

Mapping (1-mean for 3 lines)

ℓ$

ℓ:

What point minimizes the sum of distances to a given 3 lines?
- Non-convex, Non-linear, no nothing

Mapping (𝑘-mean for n lines)
Compute 𝑘 points (on drone) that minimize the sum of distances
to 𝑛 input lines

2-Factor Approximation

- Compute the closest point to each pair of the n lines
- k of them are 2-approx.
- Time too long: 𝑂 𝑛X

Coreset for 𝒌-means of lines

Input: A set 𝐿 of 𝑛 lines in ℝZ ,number of means 𝑘 ≥ 1
and coreset-size 𝑚 ≥ 1.

Output: A set of lines C = 𝑐$,… , 𝑐_ ⊆ 𝐿 and a set of corresponding
weights 𝑢 = 𝑢$,… , 𝑢_ ⊆ ℝb, such that for every set 𝑃 ⊆ ℝZ of 𝑘
points,

6
$c7c_

𝑢7 ⋅ 𝑑𝑖𝑠𝑡 𝑐7, 𝑃 ∈ 1 ± 𝜖 ⋅6
ℓ∈f

𝑑𝑖𝑠𝑡 ℓ, 𝑃 .

Theorem [with Y. Marom, NIPS’19]

Every set of 𝑛 lines has such a coreset of size ~ ijk '
l

.
- It can be compute in 𝑂(𝑛 log 𝑛) time
- Point insertion in ~ log 𝑛 time/memory (streaming)
- Parallel time reduced by a factor of M

using M machines (GPU, cloud, threads)

𝜶,𝜷 -Approximation for 𝒌 lines means

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 = 4
lines.
(2) Compute 𝐺 the 𝑘-
meanss of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-
meanss of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 = 4
lines.
(2) Compute 𝐺 the 𝑘-
meanss of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 = 4
lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 = 4
lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚 =
4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Algorithm:
(1) Pick a sample 𝑆 of 𝑚
= 4 lines.
(2) Compute 𝐺 the 𝑘-means
of 𝑆.
(3) Remove half of the
closest lines to 𝐺.
(4) Return to (1)

𝛼, 𝛽 -Approximation for 𝑘 lines means – Bicriteria

Eventually, we get 𝑘 log 𝑛
= 9 points

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers −

Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers −

Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers

− Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ :
i. Let ℓ′ be the parallel line to ℓ

that intersect 𝑏 (the projection
of ℓ onto 𝑏).

ii. Set 𝑆 to be the unit sphere that
is centered at 𝑏.

iii. Set 𝑝 ℓ{ ≔ an arbitrary point in
the pair ℓ{ ∩ 𝑆.

iv. Set 𝑄 ≔ 𝑝 ℓ{ ∣ ℓ ∈ 𝐿 .
v. Set 𝑢 ≔Weighted − Centers −

Sensitivity(Q, 2k)
vi. Set 𝑠y ℓ = 𝑢 𝑝 ℓ{

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝑏)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

Coreset for 𝑘 lines means
Algorithm:
(1) Compute 𝐵 ≔ 𝛼,𝛽 -approximation

for the 𝑘-means of 𝐿.
(2) Cluster each ℓ ∈ 𝐿 to its closest

𝑏 ∈ 𝐵 and compute its partial
sensitivity 𝑠y ℓ .

(3) For every ℓ ∈ 𝐿 and its closest point
𝑏 ∈ 𝐵, compute final sensitivity

𝑠 ℓ =
𝑑𝑖𝑠𝑡 ℓ, 𝑏

∑ℓ{∈f 𝑑𝑖𝑠𝑡(ℓ{, 𝐵)
+ 2𝑠y ℓ

(4) For every line ℓ ∈ 𝐿, define
𝑝𝑟𝑜𝑏 ℓ = � ℓ

∑ℓ�∈� � ℓ�
.

(5) Pick a sample 𝑆 consist of at least 𝑚
lines from 𝐿 with probability 𝑝𝑟𝑜𝑏 ℓ .
(6) For every ℓ ∈ 𝑆 define

𝑢 ℓ = $
� ���y ℓ

.

(7) Return (𝑆, 𝑢).

63

Thank you and the RBD students!

60 Undergraduates 25 Graduates

Papers/ThesisInfrastructures
Community

& Companies

Localization Using Sky Patterns

𝑅, 𝑡

Input: (Left) A set 𝑃 = {𝑝$,… , 𝑝'} of observed
stars of Ursa Major. (Top right) Approximation
of the known model of Ursa Major by a set
𝐿 = {ℓ$,… , ℓ'} of lines.
Output: (Bottom right) Rotation and Translation
𝑅, 𝑡 that minimize ∑7∈ ' 𝑑𝑖𝑠𝑡 𝑅𝑝7 − 𝑡, ℓ7 .

From Big Data to Small Data

Suppose that we can compute such a corset 𝐶 of size
$
�

for every set 𝑃 of n points
• in time 𝑛�,
• off-line, non-parallel, non-streaming algorithm

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f-

9

5

11
y

(10)f

~

1± 𝜖

Read the first :
�

streaming points and reduce them

into $
�

weighted points in time :
�

�

1 + 𝜖 corset for 𝑃$

Read the next :
�

streaming point and reduce them

into $
�

weighted points in time :
�

�

1 + 𝜖 corset for 𝑃:1 + 𝜖 corset for 𝑃$

Merge the pair of 𝜖-coresets into an 𝜖-corset
of :

�
weighted points

1 + 𝜖-corset for 𝑃$ ∪ 𝑃:

Delete the pair of original coresets from memory

1 + 𝜖-corset for 𝑃$ ∪ 𝑃:

Reduce the :
�

weighted points into $
�

weighted
points by constructing their coreset

1 + 𝜖-corset for 𝑃$ ∪ 𝑃:
1 + 𝜖-corset for

Reduce the :
�

weighted points into $
�

weighted
points by constructing their coreset

1 + 𝜖-corset for 𝑃$ ∪ 𝑃:
1 + 𝜖-corset for

= 1 + 𝜖 :-corset for 𝑃$ ∪ 𝑃:

1 + 𝜖 :-corset for 𝑃$ ∪ 𝑃:

1 + 𝜖 -corset for 𝑃H

1 + 𝜖 :-corset for 𝑃$ ∪ 𝑃:

1 + 𝜖 -corset for 𝑃H 1 + 𝜖 -corset for 𝑃�

1 + 𝜖 :-corset for 𝑃$ ∪ 𝑃: 1 + 𝜖 -corset for 𝑃H ∪ 𝑃�

1 + 𝜖 :-corset for 𝑃$ ∪ 𝑃: 1 + 𝜖 :-corset for 𝑃H ∪ 𝑃�

1 + 𝜖 :-coreset for

𝑃$ ∪ 𝑃: ∪ 𝑃H ∪ 𝑃�

1 + 𝜖 H-coreset for

𝑃$ ∪ 𝑃: ∪ 𝑃H ∪ 𝑃�

Parallel Computation

Parallel Computation

Parallel Computation
Run off-line
algorithm
on corset
using single
computer

83

Parallel+ Streaming Computation

